• Title/Summary/Keyword: 지반정수

Search Result 454, Processing Time 0.033 seconds

Estimation of Variability of Soil Properties and Its Application to Geotechnical Engineering Design (지반정수의 변동성 추정 및 결과의 활용)

  • Kim, Dong-Hee;Kim, Min-Tae;Lee, Chang-Ho;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.12
    • /
    • pp.71-79
    • /
    • 2010
  • The reliable evaluation of the coefficient of variation (COV) of soil properties is required for the determination of adequate design values and the application of a probabilistic method for the design of geotechnical structures. In this paper, the applicability of methods for estimating the standard deviation, such as the. Three-Sigma Rule and a statistical method, is evaluated by using site investigation data of the Songdo area. It is found that the Three-Sigma Rule provides similar results to those of a statistical method when using $N_{\sigma}$=6 for the property with small variability and $N_{\sigma}$=4.2~5.3 for the property with large variability. It is also observed that, for the undrained shear strength that has an increasing trend with depth, a $N_{\sigma}$ value of 4 is adequate for the evaluation of the variability by the Three-Sigma Rule. The COVs of soil properties determined in this paper could be used in the estimation of the confidence interval and characteristic values of soil properties.

Normalization of Cone Resistance in Granular Soil (모래지반에서 콘 저항값의 정규화에 관한 연구)

  • Na Yung-Mook
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.33-45
    • /
    • 2004
  • Sandfill at reclaimed sites is usually formed by more than one placement method. Reclaimed sandfill often shows highly variable profiles and the cone penetration test is most commonly used for site characterization. Correlations between cone resistance and geotechnical parameters for sand are influenced by in-situ stress level and it is important to incorporate stress level effect. In this study, cone penetration tests were performed at several elevations from the top of a 10m high surcharge, which was later removed step by step. In order to establish more reliable correlations between cone resistance and geotechnical parameters for sand, different ways of normalizing cone resistance by the corresponding in-situ vertical stress were investigated.

Stress-Strain Characteristics of Weathered Granite Soil in Plane Strain Test (평면변형시험을 이용한 화강풍화토의 응력-변형률 특성)

  • Kim, You-Seong;Lee, Jin-Kwang;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.37-46
    • /
    • 2014
  • Geotechnical structures have been analyzed and constructed in various geometry conditions to maintain their stability in accordance with the characteristics of construction design. Shear strengths are generally obtained from triaxial test to apply to design analysis. Geotechnical structures under strip loading, such as earth dam, embankment, and retaining wall, have the strain in a direction, and plane strain condition. Thus, an approximate shear strengths should be applied for stability analysis suitable to ground condition. When applying shear strengths obtained from triaxial tests for slope stability analysis, the evaluation of it may underestimate the factor of safety because the implementation is not suitable for geometry condition. The paper compares shear strengths obtained from triaxial test and plane strain test based on various relative densities using weathered granite soils. Additionally, yield stress is determined by maximum axial strain 15% in triaxial test because of continuous kinematic hardening, but plane strain test can determine a failure point in critical state to evaluate the shear strengths of soils at the second plastic hardening step. This study proposes to perform an appropriate test for many geotechnical problems with plane strain condition.

A Study on Estimating Shear Strength of Continuum Rock Slope (연속체 암반비탈면의 강도정수 산정 연구)

  • Kim, Hyung-Min;Lee, Su-gon;Lee, Byok-Kyu;Woo, Jae-Gyung;Hur, Ik;Lee, Jun-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.5-19
    • /
    • 2019
  • Considering the natural phenomenon in which steep slopes ($65^{\circ}{\sim}85^{\circ}$) consisting of rock mass remain stable for decades, slopes steeper than 1:0.5 (the standard of slope angle for blast rock) may be applied in geotechnical conditions which are similar to those above at the design and initial construction stages. In the process of analysing the stability of a good to fair continuum rock slope that can be designed as a steep slope, a general method of estimating rock mass strength properties from design practice perspective was required. Practical and genealized engineering methods of determining the properties of a rock mass are important for a good continuum rock slope that can be designed as a steep slope. The Genealized Hoek-Brown (H-B) failure criterion and GSI (Geological Strength Index), which were revised and supplemented by Hoek et al. (2002), were assessed as rock mass characterization systems fully taking into account the effects of discontinuities, and were widely utilized as a method for calculating equivalent Mohr-Coulomb shear strength (balancing the areas) according to stress changes. The concept of calculating equivalent M-C shear strength according to the change of confining stress range was proposed, and on a slope, the equivalent shear strength changes sensitively with changes in the maximum confining stress (${{\sigma}^{\prime}}_{3max}$ or normal stress), making it difficult to use it in practical design. In this study, the method of estimating the strength properties (an iso-angle division method) that can be applied universally within the maximum confining stress range for a good to fair continuum rock mass slope is proposed by applying the H-B failure criterion. In order to assess the validity and applicability of the proposed method of estimating the shear strength (A), the rock slope, which is a study object, was selected as the type of rock (igneous, metamorphic, sedimentary) on the steep slope near the existing working design site. It is compared and analyzed with the equivalent M-C shear strength (balancing the areas) proposed by Hoek. The equivalent M-C shear strength of the balancing the areas method and iso-angle division method was estimated using the RocLab program (geotechnical properties calculation software based on the H-B failure criterion (2002)) by using the basic data of the laboratory rock triaxial compression test at the existing working design site and the face mapping of discontinuities on the rock slope of study area. The calculated equivalent M-C shear strength of the balancing the areas method was interlinked to show very large or small cohesion and internal friction angles (generally, greater than $45^{\circ}$). The equivalent M-C shear strength of the iso-angle division is in-between the equivalent M-C shear properties of the balancing the areas, and the internal friction angles show a range of $30^{\circ}$ to $42^{\circ}$. We compared and analyzed the shear strength (A) of the iso-angle division method at the study area with the shear strength (B) of the existing working design site with similar or the same grade RMR each other. The application of the proposed iso-angle division method was indirectly evaluated through the results of the stability analysis (limit equilibrium analysis and finite element analysis) applied with these the strength properties. The difference between A and B of the shear strength is about 10%. LEM results (in wet condition) showed that Fs (A) = 14.08~58.22 (average 32.9) and Fs (B) = 18.39~60.04 (average 32.2), which were similar in accordance with the same rock types. As a result of FEM, displacement (A) = 0.13~0.65 mm (average 0.27 mm) and displacement (B) = 0.14~1.07 mm (average 0.37 mm). Using the GSI and Hoek-Brown failure criterion, the significant result could be identified in the application evaluation. Therefore, the strength properties of rock mass estimated by the iso-angle division method could be applied with practical shear strength.

Assessment of RMR with the Monte Carlo Simulation and Stability Analysis of Rock Slopes (Monte Carlo Simulation 기법을 이용한 RMR의 역산 및 그에 의한 암반시면의 안정성 분석)

  • 최성웅;정소걸
    • Tunnel and Underground Space
    • /
    • v.14 no.2
    • /
    • pp.97-107
    • /
    • 2004
  • Various kinds of rock mass properties, which can be obtained from laboratory tests as well as field tests, can be reasonably applied to the design of earth structures. An extrapolation technique can be used for this application and it generally guarantee its quality from a sufficient amount of test results because it is based on the RMR value in most cases. When the confident RMR can not be obtained because of the insufficient testing results, the Monte Carlo Simulation technique can be introduced fer deducing the proper RMR and this assessed RMR can be reused fur the major input parameters. Authors' proposed method can be verified from the comparison between the results of numerical analysis and the evidences of field site.

DEVELOPMENT OF A SYSTEM FOR DECISION OF STRENGTH PARAMETERS AND OF DEGREE OF COMPACTION IN COMPACTED SOIL WITH CONE PENETROMETER (콘관입시험기를 이용한 다짐도 측정 및 지반정수 추출법 개발)

  • YuJinLim;HyeonSeungLee
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.4
    • /
    • pp.287-296
    • /
    • 2001
  • 국내 건설현장에서는 성토다짐의 다짐도 확인을 위해 주로 평판재하시험(PBT)을 사용한다. 평판재하시험은 재하시험시 표층의 매우 잘 다져진 곳에 대한 지지력 계수를 획득 하여 실다짐도를 과대 평가하는 결과를 초래할 수 있다. 이에 착안하여 응력도달 범위가 작은 평판재하시험을 지양하고 콘관입시험으로부터 획득되는 노상의 관입지수로부터 지반의 다짐도를 추정할 수 있는 콘관입시험기와 구동시스템 및 해석 프로그램을 개발하였다. 개발된 시스템은 다짐차량에 간편하게 부착하여 현장에서 직접 다짐도를 획득할 수 있으며 다짐도와 더불어 다져진 지반의 전단강도정수를 동시에 측정할 수 있다.

  • PDF