• Title/Summary/Keyword: 지반응력

Search Result 1,483, Processing Time 0.023 seconds

Methodology to Measure Stress Within Sand Ground Using Force Sensing Resistors (박막형 압전 센서를 활용한 사질토 지반 지중 응력 측정 방법론)

  • Kim, Dong Kyun;Woo, Sang Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.115-123
    • /
    • 2024
  • Stress is an invisible physical quantity, necessitating the use of earth pressure cells for its measurement within theground. Traditional strain-gauge type earth pressure cells, due to their rigidity, can distribute stress within the ground and subsequently affect the accuracy of earth pressure measurements. In contrast, force sensing resistors are thin and flexible, enabling the minimization of stress disturbance when measuring stress within the ground. This study developed a system that utilizes force sensing resistors to measure ground stress. It involved constructing a soil chamber for calibrating the force sensing resistors, assessing the variability of measurements from resistors embedded in sand ground, and verifying the attachment of pucks to the sensing area of the resistors.

Analysis of Effective Stress Parameter on Partially Saturated Soil via Hydro-Mechanical Behaviors (부분포화토의 침투와 흙의 거동에 따른 유효응력 계수 분석)

  • Kim, Jae-Hong;Kim, You-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.117-126
    • /
    • 2011
  • Based on thermodynamics, the mathematical framework governing the hydro-mechanical behavior of partially saturated soil is derived by using balance equations, and the numerical analysis through implementation of various effective stress definitions is performed. Effective stress on partially saturated soil describes the soil strength which is presented by the relationship between water content and soil suction. For the estimation of hydro-mechanical behavior on partially saturated soil, effective stress parameter ${\chi}$ defined from various literatures is especially analyzed to understand the conditions of constitutive equations regarding residual saturation and displacement of soil. As a result, effective stress parameter ${\chi}$ has an influence on the variation of matric suction in soil with an external load and seepage. However it was found that the effect of each parameter ${\chi}$ varies with residual degree of saturation, and that of each parameter ${\chi}$ decreased with decrease in displacement of soil caused by an external load.

Behaviour of a Single Pile in Heaving Ground Due to Ground Excavation (지하터파기로 인해 융기(Heaving)가 발생한 지반에 근입된 단독말뚝의 거동)

  • Lee, Cheolju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • A finite element analysis has been conducted to clarify the behaviour of a single pile in heaving ground related to ground excavation. The numerical analysis has included soil slip at the pile-soil interface, analysing the interaction between the pile and the clay has been studied. The study includes the upward movement of the pile, the relative shear displacement between the pile and the soil and the shear stresses at the interface and the axial force on the pile. In particular, the shear stress transfer mechanism at the pile-soil interface related to a decrease in the vertical soil stress has been rigorously analysed. Due to the reductions in the vertical soil stress after excavation, the relative shear displacement and the shear stress along the pile have been changed. Upward shear stress developed at most part of the pile (Z/L=0.0-0.8), while downward shear stress is mobilized near the pile tip (Z/L=0.8-1.0) resulting in tensile force on the pile, where Z is the pile location and L is the pile length. Some insights into the pile behaviour in heaving ground analysed from the numerical analyses has been reported.

Stress Path Dependent Deformation Characteristics of A Normally Consolidated Saturated Cohesive Soil (정규압밀 포화점성토의 응력경로에 따른 변형특성)

  • 권오엽;정인준
    • Geotechnical Engineering
    • /
    • v.5 no.2
    • /
    • pp.45-56
    • /
    • 1989
  • The influence of stress path on the deformation characteristics of clay has been studied through a series of stress-path controlled triaxial tests on artificially sedimented and normally con- solidated Kaolinite. It has been found that there exists a critical stress increment ratio, Kc, in which stress·strain characteristics possesses a linear relationships and beyond Kc, strain hardening. A modified hyperbolic constitutive model for the strain hardening behavior has been formulated based on the Drnevich's hyperbolic function. And, a method of settlement analyses has been Proposed wherein the effect of stress path during consolidation is taken into account.

  • PDF

Stress Analysis of Finite Multi-layered Soils (유한다층토지반의 응력해석(1))

  • 박병기;장용채
    • Geotechnical Engineering
    • /
    • v.6 no.4
    • /
    • pp.19-32
    • /
    • 1990
  • Generally foundation is composed of complicated multi - layers. Primary objective of this study is to perform numerical analysis on the distribution of stresses on the subgrade with the variation of constitutive equations, the structures and the depth of layer, rigidity, loading condition, etc. Multi - layered soils has been treated as Burmister's elastic model. However, in this research it was intended to analyzed the distribution of stresses on the subgrade with all of the multi - layered soils by using the EVP(elasto - viscoplastic) model, one of the numerical program based on the Biot's equation as governing equation. The numerical results are compared with those by the Burmister's and the Fox'method, which in turn proves to be satisfactory. This research is aiming at investigating the mechanism of stress transfer within a foundation by using computer program for multilayers foundation.

  • PDF

Relative Density and Stress-Dependent Failure Criteria of Marine Silty Sand Subjected to Cyclic Loading (반복하중을 받는 해양실트질 모래의 상대밀도에 따른 응력기반 파괴기준)

  • Ko, Min Jae;Son, Su Won;Kim, Jin Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.79-91
    • /
    • 2017
  • An experimental study has been conducted by using the Cyclic Direct Simple Shear apparatus to evaluate the influence of average and cyclic shear stresses on the undrained shear failure behavior of marine silty sand considering various relative densities. The obtained results show that despite using different relative densities, similar trends were gained in the cyclic shear deformation. Moreover, the cyclic shear deformation is affected mainly by the average and cyclic shear stresses. The number of cyclic loads for failure is significantly affected by the cyclic shear stress ratio and relative density, and is less affected by the average shear stress ratio. The proposed three-dimensional stress-dependent failure contour can be used effectively to assess the soil shear strength considering various relative densities in the design of foundation used for offshore structures.

Centrifugal Model Test on Stress Concentration Behaviors of Composition Ground under Flexible/Stiff Surcharge Loadings (연/강성 하중을 받는 복합지반의 응력분담거동에 대한 원심모형시험)

  • Song, MyungGeun;Bae, WooSeok;Ahn, SangRo;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.6
    • /
    • pp.5-15
    • /
    • 2011
  • In this study, centrifuge model tests were performed to investigate stress concentration ratio, stress characteristics of soft clay ground improved by granular compaction piles with changes of piles type, loading condition and area replacement ratio. From the results of rigid loading tests, while vertical stresses acting on clay ground is similar, vertical stresses acting on GCP is larger than those acting on SCP with same replacement ratio. Also, average stress concentration ratio is increased proportionally with increasing the area replacement ratio of GCP and SCP. It was evaluated that average stress concentration ratio of soft clay ground improved by GCP is larger than that of SCP. As a result of flexible loading tests, stress concentration ratio is the highest when replacement ratio of GCP and SCP is 40%. Average stress concentration ratio of soft clay ground improved by GCP is a little more higher than is improved by SCP.

Geosynthetic Embankment Stability on Soft Ground Considering Reinforcement Strain (보강재의 변형을 고려한 연약지반위 섬유보강성토제체의 안정해석)

  • 이광열;정진교;황재홍;홍진원;안용수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.867-874
    • /
    • 2003
  • 섬유보강재를 이용한 성토제체의 설계에서 기존의 방법은 보강재의 변형을 무시하고 흙의 변형만을 중요시하고 있다. 보강재에 의해 보강된 성토제체의 파괴면에서 보강재와 흙의 거동은 초기응력단계에서는 일체거동현상을 나타내지만 응력의 증가에 따라 변형량에서 차이를 보인다. 이러한 문제는 토공구조물의 보강재를 설계하는데 있어서 중요한 요소로서 보강효과에 큰 영향을 미칠 수 있다. 본 연구에서는 연약지반 위에 PET Mat로 보강하여 축조한 성토제체에서 보강재와 흙의 응력 - 변형거동을 수치해석을 통하여 분석하였다. 연구결과, 파괴면에서 보강재의 변형은 보강재의 인장강도 크기에 따라 큰 차이를 보이고 있다. 외부하중에 의해 보강재에 발생하는 최대응력은 보강재의 항복인장강도를 초과하지 않으며, 보강재에 발생하는 응력이 성토체에서 발생하는 응력이상일 때 이상적인 것으로 나타났다. 또한 제체의 전단파괴에 대한 안전율은 보강재의 항복인장강도가 증가할수록 증가하는데 보강재와 흙의 변형이 일치되는 이후부터는 안전율의 증가율은 거의 미미한 것으로 나타났다.

  • PDF

A Study on Stress Redistribution Mechanism for Tunneling in an Unconsolidated Ground with Inclined Layers (미고결 층상지반에서 터널굴착시 응력재분배 메커니즘에 관한 연구)

  • Park, Si Hyun;Ahn, Sang Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.53-61
    • /
    • 2006
  • This study is aimed at to examine the stress redistribution mechanism for tunneling in an unconsolidated ground with inclined layers through model tests. To make the unconsolidated ground, two dimensional model ground is prepared with aluminum rods and blocks, which are frictional resistance free between testing apparatus walls and ground materials, by establishing the ground materials self-supporting. It is carried out to measure the ground deformation and the stress redistribution for model ground with tunneling by measuring apparatus respectively. For the ground deformation, surface settlements are measured to examine the deformation features during tunnel excavation. For the stress redistribution, the earth pressure acting on both the tunneling part and its surrounding parts is measured to examine their mutual relationship. Based on test results, precise examination is conducted on the stress redistribution mechanism in the unconsolidated ground with inclined layers during tunnel construction.

Estimation Method for Settlements of NC Clays Considering Deformation Modes Under Axis-symmetric Conditions (축대칭 조건하에서의 변형형상을 고려한 정규압밀 점성토 지반의 침하량 평가방법)

  • 김창엽;권오순;정충기
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.7-14
    • /
    • 2001
  • 구조물 하중에 의한 점성토 지반의 침하량을 보다 정확하게 평가하기 위해서는 지반 내의 흙요소가 경험하는 실제적인 응력경로와 이에 따른 변형양상이 적절하게 고려되어야만 한다. 따라서 본 연구에서는 축대칭 조건의 다양한 응력경로를 따라 발생하는 정규압밀 점성토의 변형 거동을 고찰한 기존의 실험적 연구결과를 바탕으로 응력경로법에 근거한 보다 간편하고 합리적인 침하량 평가기법을 제시하였다. 또한 본 연구에서는 제시된 평가기법을 기존의 1차원적인 침하량 평가기법들과 함께 실제와 유사한 조건을 가지는 가상지반의 침하량 산정에 적용해 보았으며, 동일한 조건에 대해 소성모델(MCC 모델)과 혼합압밀이론에 바탕을 둔 유한요소해석을 실시하였다. 그리고 이를 통해 얻어진 결과들을 비교.분석함으로써 기존 평가기법들의 문제점과 한계를 명확히 제시하였으며, 응력증분 평가방법이 침하량 평가에 미치는 영향을 분석하였다.

  • PDF