• Title/Summary/Keyword: 지반설계정수

Search Result 158, Processing Time 0.021 seconds

A Probabilistic Analysis on Logarithmic-Spiral Failure of Slope in Consideration of Load Variance (하중의 분산성을 고려한 대수누선사면 파괴의 확률론적 해석)

  • 정성관;권무남
    • Geotechnical Engineering
    • /
    • v.4 no.4
    • /
    • pp.39-50
    • /
    • 1988
  • Until now, most probabilistic approaches to the slope stability analysis have been accomplished on the arc failure surface without load. In this study, the relationships between the probability of failure and the safety factor are investigated when the shape of failure is logarithmic spiral on the homogeneous slope with ground water level, the probability distributions of the load and the strength parameter of soil being assumed as normal distribution, log-normal distribution and beta distribution. The results obtained are as follows; 1. For the same safety factor, the design of slope is more reasonable by using the probability of failure than by the safety factor because the probability of failure is increased as the coefficient of variation is increased. 2, The safety factor is more reasonably determined by the coefficient of variation of the strength parameter than by the field condition when the safety factor is applied to design of slope.

  • PDF

Deformation analysis of shallow tunneling with unconsolidated soil using nonlinear numerical modeling (비선형 수치모델링을 이용한 미고결 지반 저토피 터널의 변형해석)

  • Lee, Jae-Ho;Kim, Young-Su;Yoo, Ji-Hyeung;Jeong, Yun-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.105-116
    • /
    • 2010
  • The estimation of surface settlement, ground behavior and tunnel displacement are the main factors in urban tunnel design with shallow depth and unconsolidated soil. On deformation analysis of shallow tunnel, it is important to identify possible deformation mechanism of shear bands developing from tunnel shoulder to the ground surface. This paper investigated the effects of key design parameter affecting deformation behavior by numerical analysis using nonlinear model incorporating the reduction of shear stiffness and strength parameters with the increment of the maximum shear strain after the initiation of plastic yielding. Numerical parametric studies are carried out to consider the reduction of shear stiffness and strength parameters, horizontal stress ratio, cohesion and shotcrete thickness.

Design-Parameter Computation of Subsurface Investigation Profile on Probability Method (확률론적 방법에 의한 지반조사 자료의 설계정수 산정)

  • 신은철;김종인;이준철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.833-840
    • /
    • 2003
  • The stability of structure, effectiveness of design and construction are very important factors in soil-structure design. The design-parameter is based on the test through laboratory-test and field-test. There are two ways to obtain the design-parameter. One is to through test, and the other is through relative documents and references. Recently, statistics has been used to get reliable data. In this study, Kriging method as Geostatistics and the theory of Bayesian's inference are used and the design-parameters are obtained. As the result of this study to the design-parameter is reliable and information about soil condition and soil properties in design and construction is easily found.

  • PDF

A Study on the Design-parameter of Mixed Ground by Using Cement-type Stabilizer (시멘트계 고화재에 의해 혼합처리된 지반의 설계정수에 관한 연구)

  • 천병식;임해식;전진규
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.2
    • /
    • pp.79-89
    • /
    • 2000
  • The application of stabilization method has increased because of short construction periods, no environmental problems with dumped and replaced soil, assurance of required strength and economical effect with mid to small size construction. The unconfined and triaxial(UU-condition) compression tests were executed with each mixing sample for the study of the improvement effects and the effect of design-parameters by the stabilization methods. Three typical stabilizers, which are representative in Korea, were applied in this study, and three common soils(very soft clay, general weathered soil, common clay), which are common in Korea, were used in this study. In this study, the effect of engineering factors(soils, stabilizers and water contents, etc.) which are important parameters for the improvement effects of mixed ground by stabilizers, was analyzed. As results, the tendencies of design-parameters(unconfined compression strength, deformation modulus and strength parameter) are presented and the criteria of the application of stabilization methods are suggested.

  • PDF

Site Investigations for Design Parameter Determination (설계정수 산정을 위한 지반조사)

  • Cho, Wan-Jei
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.785-789
    • /
    • 2009
  • It is essential to carry out appropriate site investigations for the accurate prediction of the geo-structure. However, the importance of the site investigation is often overlooked due to the time and expense constraints. In this study, several cases of geotechnical design perfromed in United States are introduced with the lessons about how the site investigations are planned, performed and applied for the actual design parameter determination. Based on the case studies presented herein, experienced geotechnical engineer should participate in site investigations from the planning stage through the final boring logs and utilize all the laboratory and field tests to have consistent input parameters for the soil constitutive models. Furthermore, it is also desired to have close relationship between construction industry and the academia to compensate their needs.

  • PDF

Evaluation of dynamic ground properties using laterally impacted cross-hole seismic test (횡방향 발진 크로스홀 탄성파 시험을 이용한 지반의 동적 특성 평가)

  • Mok Young-Jin;Sun Chang Guk;Kim Jung-Han;Jung Jin-Hun;Park Chul-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.155-175
    • /
    • 2005
  • Soil and rock dynamic properties such as shear wave velocity (VS), compressional wave velocity (VP) and corresponding Poisson's ratio ( v ) are very important geotechnical parameters in predicting deformational behavior of structures as well as practicing seismic design and performance evaluation. In an effort to measure the parameter efficiently and accurately, various bore-hole seismic testing techniques have been, thus, developed and used during past several decades. In this study, cross-hole seismic testing technique which is known as the most reliable seismic method was adopted for obtaining geotechnical dynamic properties. To perform successfully the cross-hole test for rock as well as soil layers regardless of the ground water level, spring-loaded source which impact laterally a subsurface ground in vertical bore-hole was developed and applied at three study areas, which contain four sites composed of two existing port sites and two new LNG storage facility sites. The geotechnical dynamic properties such as VS, VP and v with depth were efficiently determined from the laterally impacted cross-hole seismic tests at study sites, and were provided as the fundamental parameters for the seismic performance evaluation of the existing ports and the seismic design of the LNG storage facilities.

  • PDF

A Study on the Design Load of Artificial Soil Ground (인공지반의 설계하중 산정에 관한 연구)

  • Youn, Seong-Cheol;Kim, Tae-Gyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.2
    • /
    • pp.36-46
    • /
    • 2009
  • The objective of this study is to analyze the effect of artificial soil ground on a structure. When the artificial soil ground is planted, the technical factors to be considered will be the load for buildings and the growth of plants. There are no current studies of the effect of artificial soil ground on a structure and this study will analyze the load effects of artificial soil ground, which mixes both pearlite and natural soil on structures. The load affecting the structures due to artificial soil ground will be maximized when the artificial soil ground becomes saturated, and which would occur when the rainfall intensity exceeds the infiltration capacity of the artificial soil ground. In order to determine whether the artificial soil ground has reached saturation or not, a 10 years frequency and 10 minutes rainfall intensity which is used for in urban drain design, is utilized. The hydraulic conductivity of artificial soil and mixed soil has been changed depending on the proportion of the mix, It has a range of fluctuation in the degree of hardening, in particular, but does not exceed the 10 minutes rainfall intensity over 10 years frequency in the most cases. Therefore, it would be efficient to apply the saturated unit weight of artificial soil ground as the design load of a structure.

Estimation of Over Consolidation Ratio in Southern Coasts (남해안 지역의 과압밀비에 대한 평가)

  • Kang, Seokbeom;Heo, Yol;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.93-104
    • /
    • 2012
  • Efforts to understand and develop reasonable analysis methods for the uncertainty of ground have been made since the 20th century, and the concept of safety factor has been used. However, this concept has limitation in measuring the relative reliability of ground structures because the representative values of the actually used factors have uncertainty. Nevertheless, there is no method to completely remove uncertainty. In most cases, the ground investigation results in Korea are not enough for applying such statistical methods. Furthermore, performing a design without accurate investigation of consolidation state even though consolidation characteristics such as settlement and consolidation velocity vary greatly by the consolidation history can lead to many problems. Therefore, in this paper, as part of the effort to reduce the uncertainty of design around over consolidation ratio among the consolidation factors, the consolidation state was assessed on the basis of the results of high-quality laboratory tests that were performed in Gwangyang and Busan in the southern coast of Korea. Furthermore, consolidation characteristics such as over consolidation ratio by depth were proposed for different regions through statistical processes such as the test of normality and the removal of abnormal values to reduce the uncertainty of design parameters.

A Study on the Evaluation of the Loads Acting on the Pillar in Two-Arch Tunnel (2-Arch 터널 중앙벽체 작용하중 산정에 관한 연구)

  • Oh, Gyoo-Chul;Chun, Byung-Sik;Do, Jong-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.5-14
    • /
    • 2007
  • In this study, Matsuda formula used to evaluate the loads acting on the pillar was investigated and load reduction factor(${\alpha}$) was evaluated by numerical analysis to better apply for the design. From the results, normal stress was concentrated to one side due to excavation of preceding tunnel after construction of pillar. And 86.5% of maximum normal stress was revealed partly unequally when the ground was poor. By numerical analysis, $14{\sim}83%$ of total loads calculated by Matsuda formula decreased and then, from these results, load reduction factor(${\alpha}$) was estimated. From now on, stability and economic aspects could be guaranteed by applying the load reduction factor(${\alpha}$).

A Case Study on Quantifying Uncertainties of Geotechnical Random Variables (지반 확률변수의 불확실성 정량화에 관한 사례연구)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Kim, Hong-Yeon
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.15-25
    • /
    • 2012
  • Probabilistic design methods have been used as a design standard in Korea and abroad for achieving reasonable design by considering the statistical uncertainties of soil properties. In this study, the following techniques for reflecting geotechnical uncertainty are analyzed: quantification of the uncertainties of geotechnical random variables, and consideration of economic feasibility in design by minimizing the uncertainties related to the number of samples. To quantify the uncertainties, the techniques were applied to soil properties obtained from samples collected and tested in the field. The results showed an underestimation of the standard deviation by the 3-sigma approach in comparison with calculations using data from the samples. This finding indicates that economical design is possible in terms of probability. However, when compared with the Bayesian approach, which does not consider the number of samples, variability in the 3-sigma approach is underestimated for some variables. This finding also indicates a safety issue, whereas the number of samples based on the Bayesian approach showed the lowest variance. The variance of the probability density function showed a marked decrease with increasing number of samples, to converge at a certain level when the number exceeds 25. Of note, the estimation of values is more reliable for random variables having low variability, such as soil unit weight, and can be obtained with a small number of samples.