• Title/Summary/Keyword: 지반공동

Search Result 369, Processing Time 0.026 seconds

Understanding of Subsurface Cavity Mechanism due to the Deterioration of Buried Pipe (노후 매립관로로 인한 지하 공동발생 메카니즘 고찰)

  • Lee, Dae-Young;Cho, Nam-Kak
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.33-43
    • /
    • 2016
  • In order to analyze ground relaxation and cavity formation mechanism due to deteriorated sewer pipe, field test was carried out and a numerical assessments were compared with the field test results. An artificial underground cavity was intended using the ice block overlaying the buried pipe and confirmed that the cavity and relaxation of the surrounding ground were gradually formed as the ice block starts to melt down. Such mechanism was highly suspected to be involved with soil particle interlocking as a soil compaction was a typical process for the buried pipes. In exploring such mechanism numerically, commercially available DEM (Discrete Element Method) code PFC2D was used and the interlocking induced cavern behaviors were successfully simulated and compared with field test results by utilizing the clump logic imbedded in PFC code.

The Stability of Strip Footing above Underground Cavity (지하공동에 인접한 연속기초의 안정성)

  • Oh, Se-Wook;Lee, Bong-Jik;Bae, Woo-Seok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.69-76
    • /
    • 2006
  • In this study, an experimental study in sand ground that was prepared by raining method was performed for modeling the bearing capacity behavior of strip footing above a cavity. The critical range of bearing capacity of the strip footing affected by underground cavity was investigated by comparing results between experiment and theory. The size of the critical region depends on several factors such as footing shape, soil property, cavity size and cavity shape. The ultimate bearing capacity was more influenced by the depth of the underground cavity than the eccentricity of the underground. In addition, an underground cavity influences on not only the decrease of the bearing capacity, but also the differential settlement of a strip footing.

  • PDF

Application of Successive Cavity Expansion Theory to Piezocone Tests. (피에조콘 관입 시험에 대한 연속 공동확장이론모델의 적용)

  • Lim, Beyong-Seock;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.599-606
    • /
    • 2000
  • 본 연구는 피에조콘(Piezocone) 관입 시험에 의한 과잉간극수압의 소산(Dissipation)특성을 파악하기 위하여, 실측된 소산실험 결과치와 Gupta & Davidson에 의해 개발된 연속 공동확장이론(Successive Cavity Expansion Theory) 모델을 비교하였고, 그 경험적 이론의 적합성을 규명하였다. 연속 공동확장 이론이란, 콘 관입이 유발하는 관입 주변지반의 변환 메커니즘을 연속적인 공동확장의 전개과정로 파악할 때, 관입주변의 연속적 공동확장 영역에서 발생된 과잉간극수압들은 연속적으로 소산되어지고, 결국에는 관입멈춤직후 얻게 되는 소산시험의 결과도 이러한 과잉간극수압의 연속적 소산 메커니즘으로부터 그 영향을 받는다는 개념이다. 본 연구의 실험방법은 Piezocone 관입을 위한 연약모형지반 조성을 위하여 초대형 Slurry Consolidometer에 Slurry를 45일간 압밀시킨후 Calibration Chamber(Louisiana State University Calibration Chamber System)에 옮긴 후 2차 압밀시키는 Two-Stage Consolidation Method를 사용하였다. 또한 모형지반내에 8개의 Piezometers를 설치하여 Piezometers를 설치하여 Piezocone 관입시 유발되는 지반 내에서의 과잉간극수압의 변환을 측정하였다. 실험결과와 이론 예측치를 비교함으로써 연속 공동확장이론 모델은 u$_2$형식의 피에조콘 관입 소산시험 결과들과 잘 들어맞는 모습을 보여줬으나, 관입으로 인한 주변 지반의 과잉간극수압의 소산변화는 정성적으로만 모사 되는 모습을 보여줬다.

  • PDF

Evaluation on Cavity Expansion under Pavement based on Groundwater Injection test (지하수 주입실험을 통한 도로노면 하부의 공동 확장 평가)

  • Park, Jeong-Jun;You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.79-88
    • /
    • 2019
  • This study described a results of groundwater injection test in cavity, in order to evaluate characteristics of cavity expansion under pavement. That is, groundwater amount proportional to the cavity volume was injected into the generated cavity step by step, and then the cavity with the changed size was monitored as the injected groundwater was drained. The test result showed that the cavity volume by groundwater injection increased, and then it converged or decreased. This means that some of the relaxation soil around the cavity collapsed, and the fine-grained soils in some soils filled the void in the surrounding soils when the cavity is expanded by groundwater injection. The volume change and expansion characteristics of the cavity according to the groundwater injection step were analyzed. The result showed that the cavity extended laterally. Therefore, it was found that the cavity expansion is caused by the repetition of the relaxation soil collapse due to the groundwater flow and the loss of the collapsed soil below the cavity.

A Study on Dielectrical Constant under Ground Conditions (지반조건에 따른 유전상수 변화에 관한 연구)

  • Cho, Jinwoo;Cho, Wonbeom;Kim, Jinman;Choi, Bonghyuck
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.17-25
    • /
    • 2012
  • In this study, dielectrical constant of the ground was measured using TDR method and correlated with water contents and density of ground. In order to evaluate the applicability as a cavity exploration, model experiments were carried out to analyze the effects of cavity size on the dielectrical constant. Test result indicated that dielectrical constant of the ground tended to linearly increase with the increase in water contents and density, which can be represented in a certain relational expression. Also, the dielectrical constant of ground varied sensitively with the cavity size of ground. The results conclude that the dielectrical constant, water contents and density of the ground proved to have a correlation among them, and the dielectrical constant is expected to be a basic data on cavity exploration.

A Study on the Upper Ground Reinforcement Effect in Underground Cavern (지하공동 상부지층 보강효과에 관한 연구)

  • Kim, Ki Ho;Lim, Jong Se;Jang, Won Yil
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.275-283
    • /
    • 2015
  • Excavation of underground space in soft ground implicate to the structure, such as subsidence. As a result, it has been acting as a serious risk to the stability of the roads and facilities. Therefore, in order to stabilize the soil stabilization and reinforcement of the structure, we have been using a number of methods and injecting material. In this study, we compared and analyzed the amount of subsidence regarding the ground reinforcement during underground excavation in soft ground by performing model test. And three-dimensional numerical analysis was performed using FLAC 3D. The subsidence was simulated numerically according to the tunnel excavation. The subsidence results of the model tests and numerical analyzes were relatively consistent. Thus comparing the ground subsidence by varying the reinforcement area on the numerical analysis was analyzed. As a results, three-dimensional numerical simulation could be regarded to simulate better on the ground subsidence by various kinds of underground excavation and it can be used as a material of subsidence prevention methods.

Study on Management System of Ground Sinking Based on Underground Cavity Grade (공동관리 등급에 따른 지반함몰 관리등급제에 대한 연구)

  • Lee, Kicheol;Kim, Dongwook;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.23-33
    • /
    • 2017
  • Due to the rapid development of cities, densities and heights of urban structures are increased, and much larger and more underground spaces are being developed accordingly. Increasing development of underground spaces has induced more ground sinks and underground cavities. Therefore, safety of people is threatened by potential ground collapses and possible accidents, which may result from underground cavity. To actively respond against potential danger of ground sink, evaluation of existing cavity grade and development of recovery procedure are important. There exists the ground sinking management grade system of expressway developed as local standards in Japan. Recently, ground sinking management grade system of Seoul was developed with consideration of road and asphalt conditions. In this study, 209 underground cavities of ${\bigcirc}{\bigcirc}$ area were explored and their cavity shapes and grades were evaluated based on both ground sinking management grade systems of Japan and Seoul. Comparison is made between cavity grades evaluated based on both grading systems from Japan and Seoul. As a result of comparative analysis, the conservatively-estimated cavity grades requiring emergency restoration based on the Japanese management grade system of expressway result from neglection of layer thickness of surface pavement, considering only width and cover depth of a cavity.

Experimental Study on Ground Subsidence and Underground Cavity Expansion under Various Conditions (다양한 조건에 따른 지반함몰과 지중공동 확장에 대한 실험적 연구)

  • Jeong, SeongYun;Karoui, Tarek;Jeong, YeongHoon;Kim, DongSoo
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.143-152
    • /
    • 2017
  • Recently frequent occurrence of ground subsidence cases has become social issue, and people's concern on this problem has been growing accordingly. Meanwhile, understanding on the mechanism of ground subsidence formation is not enough. Therefore, this study aims for evaluating formation mechanism of ground subsidence under various groundwater conditions through model test when groundwater and soil are leaked together. Major factors found through model tests are direction of groundwater flow, head difference around the leakage point, and strehgth of the ground to support the underground cavity. Firstly, direction of groundwater flow has an influence on the direction of cavity expansion and ground collapse. Secondly, it is observed that the speed of ground subsidence formation increases as the head difference increases. Lastly, the expansion of the cavity can eventually lead to a sudden collapse.

Numerical Analysis on the Influence Factors of Cavity Occurrence in the Stability of the Underground with Cavity (도로 하부지반에서 발생된 공동이 지반 안정성에 미치는 영향에 관한 수치해석)

  • Nam, Jun-Hee;Kim, Jong-Chul;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.49-56
    • /
    • 2022
  • In this study, finite element numerical analysis was performed considering various influence factors(cavity shape and size, pavement thickness and size of traffic load) in order to analyze the impact factors in the underground of the road where the cavity occurred and to evaluate the stability of the ground. In order to verify the reliability of the numerical analysis method applied in this study and the results it was compared and analyzed with the results of previous studies and field measurements. The correlation between the influence factors was analyzed through the distribution of vertical displacement obtained from the numerical analysis results, the distribution of surface settlement and surface settlement, the distribution of the stress ratio, and the distribution of the safety factor. As a result, it was confirmed that as the size of the cavity and traffic load increased and the thickness of the pavement decreased, the vertical displacement and surface settlement at the top of the cavity increased. Also, the shape of the cavity was square, the stability of the ground was significantly reduced compared to the case of a circular cavity. Through these results, it was possible to confirm the overall stability of the lower ground of the road where the cavity was generated.

Numerical Stability Evaluation of Underground Semi-Spherical Cavity (반구형 지중공동의 수치해석적 안정성 평가)

  • Lee, Taegeon;Ryu, Dong-Woo;Youn, Heejung
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.20-29
    • /
    • 2022
  • The existence of underground cavity should be considered in the assessment of georisk such as ground subsidence. Even if the shear strength of the ground around the cavity is known, it is difficult to accurately analyze the safety around the cavity due to the uncertainties related to geometric conditions such as the cavity size. In this paper, stability chart representing dimensionless stability constants was proposed based on the ground strength and geometric conditions. Numerical analysis had been carried out accounting for the stability constants such as the ground strength, the adhesion and friction angles, and the size and depth of the underground cavity. The proposed charts can help estimating the stability of ground with underground circular cavity.