DOI QR코드

DOI QR Code

Numerical Stability Evaluation of Underground Semi-Spherical Cavity

반구형 지중공동의 수치해석적 안정성 평가

  • Lee, Taegeon (Civil Engineering Design Team, Civil Works and the Environment Division, Hanwha E&C) ;
  • Ryu, Dong-Woo (Geo-ICT Convergence Research Department, Korea Institute of Geoscience & Mineral Resources) ;
  • Youn, Heejung (Dept. of Civil and Environmental Engineering, Hongik University)
  • 이태건 (한화건설 토목환경사업본부 토목기술팀) ;
  • 류동우 (한국지질자원연구원 지오플랫폼연구본부 Geo-ICT융합연구팀) ;
  • 윤희정 (홍익대학교 건설환경공학과)
  • Received : 2021.11.05
  • Accepted : 2022.01.07
  • Published : 2022.02.28

Abstract

The existence of underground cavity should be considered in the assessment of georisk such as ground subsidence. Even if the shear strength of the ground around the cavity is known, it is difficult to accurately analyze the safety around the cavity due to the uncertainties related to geometric conditions such as the cavity size. In this paper, stability chart representing dimensionless stability constants was proposed based on the ground strength and geometric conditions. Numerical analysis had been carried out accounting for the stability constants such as the ground strength, the adhesion and friction angles, and the size and depth of the underground cavity. The proposed charts can help estimating the stability of ground with underground circular cavity.

지중공동이 존재하는 지반의 거동은 지반함몰의 위험을 평가할 때 반드시 고려해야 하는 사항이다. 지중공동 주변 지반의 전단강도를 알더라도 공동의 크기와 같은 기하학적 요소와 관련된 불확실성으로 인해 정밀한 분석이 어렵다. 본 연구에서는 지반의 강도 및 공동의 기하학적 조건들을 바탕으로 무차원 안정성 상수를 나타내는 도표를 제안하였다. 이를 위해 수치해석이 수행되었으며 안정성 상수는 지반의 강도 정수인 점착력과 마찰각, 그리고 지중 공동의 크기와 심도를 고려한다. 제안도표는 지반 조건을 바탕으로 현장의 안정성을 추정하는 데 도움이 될 수 있다.

Keywords

Acknowledgement

이 논문은 2020년도 정부(교육부)의 재원으로 한국연구재단(No. 2020R1A2C101349112)의 지원과 한국지질자원연구원(KIGAM) 주요사업 '도시복합지질재난 능동 대응 스마트 통합솔루션 기술 개발(GP2021-007)'의 지원으로 수행되었으며 이에 감사드립니다.

References

  1. Abdulla, W.A., and Goodings, D.J., 1996, Modeling of sinkholes in weakly cemented sand, Journal of geotechnical engineering, 122(12), 998-1005. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:12(998)
  2. Augarde, C.E., Lyamin, A.V., and Sloan, S.W., 2003, Prediction of undrained sinkhole collapse, Journal of Geotechnical and Geoenvironmental Engineering, 129(3), 197-205. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:3(197)
  3. Choi, S.-K., Back, S.-H., An, J.-B., and Kwon, T.-H., 2016, Geotechnical investigation on causes and mitigation of ground subsidence during underground structure construction, Journal of Korean Tunnelling and Underground Space Association, 18(2), 143-154. https://doi.org/10.9711/KTAJ.2016.18.2.143
  4. Craig, W., 1990, Collapse of cohesive overburden following removal of support, Canadian Geotechnical Journal, 27(3), 355-364. https://doi.org/10.1139/t90-046
  5. Davis, E., Gunn, M., Mair, R., and Seneviratine, H., 1980, The stability of shallow tunnels and underground openings in cohesive material, Geotechnique, 30(4), 397-416. https://doi.org/10.1680/geot.1980.30.4.397
  6. Drumm, E., Ketelle, R., Manrod, W., and Ben-Hassine, J., 1987, Analysis of plastic soil in contact with cavitose bedrock, Geotechnical Practice for Waste Disposal'87, ASCE.
  7. Drumm, E.C., Akturk, O., Akgun, H., and Tutluodlu, L., 2009, Stability charts for the collapse of residual soil in karst, Journal of Geotechnical and Geoenvironmental Engineering, 135(7), 925-931. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000066
  8. Drumm, E.C., and Yang, M.Z., 2005, Preliminary screening of residual soil stability in karst terrain, Environmental & Engineering Geoscience, 11(1), 29-42. https://doi.org/10.2113/11.1.29
  9. Ganainy, H.E., Demirkan, M.M., Gutierrez, J.J., Ramanathan, R., Hatipoglu, B., Adib, M.E., and Barton, D., 2016, Stability of Solution Cavities in Urban Developments: A Case Study Towards Enhancing Geohazard Risk Assessmentl, Geotechnical and Geological Engineering, 34, 125-141. https://doi.org/10.1007/s10706-015-9933-1
  10. Ketelle, R., Manrod, W., Drumm, E., and Ben-Hassine, J., 1987, Soil mechanics analysis of plastic soil deformation over a bedrock cavity, Multidisciplinary conference on sinkholes and the environmental impacts of karst, 2.
  11. Lee, K., Lee, S., Ok, J., Ha, K., Han, S., and Lee, H., 2014, A basic study on land subsidence hazard map for Gyeonggi-Do, Gyeonggi Research Institute, 1-44.
  12. Muller, A.L., do Amaral Vargas Jr, E., Vaz, L.E., and Goncalves, C.J., 2009, Borehole stability analysis considering spatial variability and poroelastoplasticity, International journal of rock mechanics and mining sciences, 46(1), 90-96. https://doi.org/10.1016/j.ijrmms.2008.05.001
  13. Sams, C., and Sefat, M., 1995, Analysis of surface subsidence by pinnacle punching: Report on residual soil settlement, Report, Law Engineering and Environmental Services Charlotte, NC.
  14. Seoul Seokchon-dong Cavity Cause Investigation Committee, 2014, Investigation of cause for load sinkage in Seoul city, Seoul, Korea.
  15. Soliman, M.H., Shamet, R., Kim, Y.J., Youn, H., and Nam, B.H., 2019, Numerical investigation on the mechanical behaviour of karst sinkholes, Environmental Geotechnics, 8(6), 367-381.
  16. Sowers, G.F., 1996, Building on sinkholes: design and construction of foundations in karst terrain, American Society of Civil Engineers.
  17. Terzaghi, K., 1943, Theoretical soil mechanics, John Wiley and Sons, New York, 66-76.
  18. Veeken, C., Walters, J., Kenter, C., and Davies, D., 1989, Use of plasticity models for predicting borehole stability, ISRM International Symposium, Pau, France, International Society for Rock Mechanics and Rock Engineering.
  19. Yang, M.Z., and Drumm, E.C., 2002, Stability evaluation for the siting of municipal landfills in karst, Engineering Geology, 65(2-3), 185-195. https://doi.org/10.1016/S0013-7952(01)00128-4
  20. Zhang, J., Bai M., and Roegiers, J.-C., 2003, Dual-porosity poroelastic analyses of wellbore stability, International journal of rock mechanics and mining sciences, 40(4), 473-483. https://doi.org/10.1016/S1365-1609(03)00019-4
  21. Zheng, H., Tham, L., and Liu, D., 2006, On two definitions of the factor of safety commonly used in the finite element slope stability analysis, Computers and Geotechnics, 33(3), 188-195. https://doi.org/10.1016/j.compgeo.2006.03.007