• Title/Summary/Keyword: 지문 정합

Search Result 68, Processing Time 0.028 seconds

Fingerprint Classification Based On the Entropy of Ridges (융선 엔트로피 계측을 이용한 지문 분류)

  • Park, Chang-Hee;Yoon, Kyung-Bae;Ko, Chang-Bae
    • The KIPS Transactions:PartB
    • /
    • v.10B no.5
    • /
    • pp.497-502
    • /
    • 2003
  • Fingerprint classification plays a role of reduction of precise joining time and improvement of the accuracy in a large volume of database. Patterns of fingerprint are classified as 5 patterns : left loop, right loop, arch, whorl, and tented arch by numbers and the location of core point and delta point. The existing fingerprint classification is useful in a captured fingerprint image of core point and delta point using paper and ink. However, this system is unapplicable in modern Automatic Fingerprint Identification System (AFIS) because of problems such as size of input and way of input. To solve the problem, this study is to suggest the way of being able to improve accuracy of fingerprint by fingerprint classification based on the entropy of ridges using fingerprint captured mage of core point and prove this through the experiment.

Feature Extraction System for High-Speed Fingerprint Recognition using the Multi-Access Memory System (다중 접근 메모리 시스템을 이용한 고속 지문인식 특징추출 시스템)

  • Park, Jong Seon;Kim, Jea Hee;Ko, Kyung-Sik;Park, Jong Won
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.8
    • /
    • pp.914-926
    • /
    • 2013
  • Among the recent security systems, security system with fingerprint recognition gets many people's interests through the strengths such as exclusiveness, convenience, etc, in comparison with other security systems. The most important matters for fingerprint recognition system are reliability of matching between the fingerprint in database and user's fingerprint and rapid process of image processing algorithms used for fingerprint recognition. The existing fingerprint recognition system reduces the processing time by removing some processes in the feature extraction algorithms but has weakness of a reliability. This paper realizes the fingerprint recognition algorithm using MAMS(Multi-Access Memory System) for both the rapid processing time and the reliability in feature extraction and matching accuracy. Reliability of this process is verified by the correlation between serial processor's results and MAMS-PP64's results. The performance of the method using MAMS-PP64 is 1.56 times faster than compared serial processor.

Hardware Implementation of the Fuzzy Fingerprint Vault System (지문 퍼지볼트 시스템의 하드웨어 구현)

  • Lim, Sung-Jin;Chae, Seung-Hoon;Pan, Sung-Bum
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.2
    • /
    • pp.15-21
    • /
    • 2010
  • The user authentication using fingerprint information not only provides the convenience but also high security. However, the fingerprint information for user authentication can cause serious problems when it has been compromised. It cannot change like passwords, because the user only has ten fingers on two hands. Recently, there is an increasing research of the fuzzy fingerprint vault system to protect fingerprint information. The research on the problem of fingerprint alignment using geometric hashing technique carried out. This paper proposes the hardware architecture fuzzy fingerprint vault system based on geometric hashing. The proposed architecture consists of software and hardware module. The hardware module has charge of matching between enrollment hash table and verification hash table. Based on the experimental results, the execution time of the proposed system with 36 real minutiae is 0.2 second when 100 chaff minutiae, 0.53 second when 400 chaff minutiae.

Implementation of Embedded Biometrics Technologies: a Security Token System for Fingerprints (임베디드 생체인식기술 구현: 지문 보안토큰 시스템)

  • Kim, Y.J.;Pan, S.B.;Moon, D.S.;Gil, Y.H.;Chung, Y.W.;Chung, K.I.
    • Electronics and Telecommunications Trends
    • /
    • v.17 no.6 s.78
    • /
    • pp.20-28
    • /
    • 2002
  • 지문 정보 등의 생체 정보를 이용하는 생체 기술은 컴퓨터 시스템의 로그인, 출입 ID, 전자상거래 보안 등의 여러 서비스에서 사용자의 안전한 인증을 위해 널리 사용되고 있다. 근래에 이르러, 생체 기술은 비밀 번호와 같은 기존의 개인 인증 방법에 비해 안전하면서도 자동화를 가져올 수 있다는 장점으로 인해 보안 토큰, 스마트 카드와 같은 소형의 임베디드 시스템에 탑재되고 이용되는 추세이다. 본 논문에서는 보안 토큰을 이용한 생체 인식 기술의 시장 동향을 살펴보고 임베디드 시스템의 형태인 보안 토큰 시스템을 개발하고 시험한 결과를 기술하였다. 보안 토큰과 호스트와의 통신은 USB를 이용하여 시험 및 검증하였으며 보안 토큰 상에서의 지문 정합 프로그램의 성능 측정 및 개선에 대해 기술하였다. 나아가, 보안 토큰에서 매치 온 카드(match-on-card)로의 전이를 위해 필요한 내용을 언급하였다.

Scoring Method of Fingerprint Image Quality using Classified Block-level Characteristics (블록 레벨의 분류 특성을 이용한 지문 영상의 품질 측정 방법)

  • Moon, Ji-Hyun;Kim, Hak-Il
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.2
    • /
    • pp.29-40
    • /
    • 2007
  • The purpose of this research is to propose a method for scoring the quality of a fingerprint image using the local information derived from the fingerprint image. In previous works for the quality measuring, most of the quality scores are related to the performance of a matching algorithm, and this makes the quality result more subjective. The quality score of a fingerprint image proposed in this work is sensor-independent, source-independent and matcher-independent one, and this concept of fingerprint sample quality results in effective improvement of the system performance. In this research, a new definition of fingerprint image quality and a new method for measuring the quality are proposed. For the experiments, several sub-databases from FVCs are used and the proposed method showed reasonable results for the test database. The proposed method can be used in various systems for the numerous purposes since the quality scores generated by the proposed method are based on the idea that the quality of fingerprint should be sensor-independent, source-independent and matcher-independent.

A fingerprint Alignment with a 3D Geometric Hashing Table based on the fuzzy Fingerprint Vault (3차원 기하학적 해싱을 이용한 퍼지볼트에서의 지문 정합)

  • Lee, Sung-Ju;Moon, Dae-Sung;Kim, Hak-Jae;Yi, Ok-Yeon;Chung, Yong-Wha
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.1
    • /
    • pp.11-21
    • /
    • 2008
  • Biometrics-based user authentication has several advantages over traditional password-based systems for standalone authentication applications. This is also true for new authentication architectures known as crypto-biometric systems, where cryptography and biometrics are merged to achieve high security and user convenience at the same time. Recently, a cryptographic construct, called fuzzy vault, has been proposed for crypto-biometric systems. This construct aims to secure critical data(e.g., secret key) with the fingerprint data in a way that only the authorized user can access the secret by providing the valid fingerprint, and some implementations results for fingerprint have been reported. However, the previous results had some limitation of the provided security due to the limited numbers of chaff data fer hiding real fingerprint data. In this paper, we propose an approach to provide both the automatic alignment of fingerprint data and higher security by using a 3D geometric hash table. Based on the experimental results, we confirm that the proposed approach of using the 3D geometric hash table with the idea of the fuzzy vault can perform the fingerprint verification securely even with more chaff data included.

An Algorithm of Fingerprint Image Restoration Based on an Artificial Neural Network (인공 신경망 기반의 지문 영상 복원 알고리즘)

  • Jang, Seok-Woo;Lee, Samuel;Kim, Gye-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.530-536
    • /
    • 2020
  • The use of minutiae by fingerprint readers is robust against presentation attacks, but one weakness is that the mismatch rate is high. Therefore, minutiae tend to be used with skeleton images. There have been many studies on security vulnerabilities in the characteristics of minutiae, but vulnerability studies on the skeleton are weak, so this study attempts to analyze the vulnerability of presentation attacks against the skeleton. To this end, we propose a method based on the skeleton to recover the original fingerprint using a learning algorithm. The proposed method includes a new learning model, Pix2Pix, which adds a latent vector to the existing Pix2Pix model, thereby generating a natural fingerprint. In the experimental results, the original fingerprint is restored using the proposed machine learning, and then, the restored fingerprint is the input for the fingerprint reader in order to achieve a good recognition rate. Thus, this study verifies that fingerprint readers using the skeleton are vulnerable to presentation attacks. The approach presented in this paper is expected to be useful in a variety of applications concerning fingerprint restoration, video security, and biometrics.

Robust Orientation Estimation Algorithm of Fingerprint Images (노이즈에 강인한 지문 융선의 방향 추출 알고리즘)

  • Lee, Sang-Hoon;Lee, Chul-Han;Choi, Kyoung-Taek;Kim, Jai-Hie
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.1
    • /
    • pp.55-63
    • /
    • 2008
  • Ridge orientations of fingerprint image are crucial informations in many parts of fingerprint recognition such as enhancement, matching and classification. Therefore it is essential to extract the ridge orientations of image accurately because it directly affects the performance of the system. The two main properties of ridge orientation are 1) global characteristic(gradual change in whole part of fingerprint) and 2) local characteristic(abrupt change around core and delta points). When we only consider the local characteristic, estimated ridge orientations are well around singular points but not robust to noise. When the global characteristic is only considered, to estimate ridge orientation is robust to noise but cannot represent the orientation around singular points. In this paper, we propose a novel method for estimating ridge orientation which represents local characteristic specifically as well as be robust to noise. We reduce the noise caused by scar using iterative outlier rejection. We apply adaptive measurement resolution in each fingerprint area to estimate the ridge orientation around singular points accurately. We evaluate the performance of proposed method using synthetic fingerprint and FVC 2002 DB. We compare the accuracy of ridge orientation. The performance of fingerprint authentication system is evaluated using FVC 2002 DB.

A Method for Finger Vein Recognition using a New Matching Algorithm (새로운 정합 알고리즘을 이용한 손가락 정맥 인식 방법)

  • Kim, Hee-Sung;Cho, Jun-Hee
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.11
    • /
    • pp.859-865
    • /
    • 2010
  • In this paper, a new method for finger vein recognition is proposed. Researchers are recently interested in the finger vein recognition since it is a good way to avoid the forgery in finger prints recognition and the inconveniences in obtaining images of the iris for iris recognition. The vein images are processed to obtain the line shaped vein images through the local histogram equalization and a thinning process. This thinned vein images are processed for matching, using a new matching algorithm, named HS(HeeSung) matching algorithm. This algorithm yields an excellent recognition rate when it is applied to the curve-linear images processed through a thinning or an edge detection. In our experiment with the finger vein images, the recognition rate has reached up to 99.20% using this algorithm applied to 650finger vein images(130person ${\times}$ 5images each). It takes only about 60 milliseconds to match one pair of images.

An Algorithm for Filtering False Minutiae in Fingerprint Recognition and its Performance Evaluation (지문의 의사 특징점 제거 알고리즘 및 성능 분석)

  • Yang, Ji-Seong;An, Do-Seong;Kim, Hak-Il
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.3
    • /
    • pp.12-26
    • /
    • 2000
  • In this paper, we propose a post-processing algorithm to remove false minutiae which decrease the overall performance of an automatic fingerprint identification system by increasing computational complexity, FAR(False Acceptance Rate), and FRR(False Rejection Rate) in matching process. The proposed algorithm extracts candidate minutiae from thinned fingerprint image. Considering characteristics of the thinned fingerprint image, the algorithm selects the minutiae that may be false and located in recoverable area. If the area where the selected minutiae reside is thinned incorrectly due to noise and loss of information, the algorithm recovers the area and the selected minutiae are removed from the candidate minutiae list. By examining the ridge pattern of the block where the candidate minutiae are found, true minutiae are recovered and in contrast, false minutiae are filtered out. In an experiment, Fingerprint images from NIST special database 14 are tested and the result shows that the proposed algorithm reduces the false minutiae extraction rate remarkably and increases the overall performance of an automatic fingerprint identification system.

  • PDF