• Title/Summary/Keyword: 지능 기계

Search Result 1,062, Processing Time 0.027 seconds

Generative optical flow based abnormal object detection method using a spatio-temporal translation network

  • Lim, Hyunseok;Gwak, Jeonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.11-19
    • /
    • 2021
  • An abnormal object refers to a person, an object, or a mechanical device that performs abnormal and unusual behavior and needs observation or supervision. In order to detect this through artificial intelligence algorithm without continuous human intervention, a method of observing the specificity of temporal features using optical flow technique is widely used. In this study, an abnormal situation is identified by learning an algorithm that translates an input image frame to an optical flow image using a Generative Adversarial Network (GAN). In particular, we propose a technique that improves the pre-processing process to exclude unnecessary outliers and the post-processing process to increase the accuracy of identification in the test dataset after learning to improve the performance of the model's abnormal behavior identification. UCSD Pedestrian and UMN Unusual Crowd Activity were used as training datasets to detect abnormal behavior. For the proposed method, the frame-level AUC 0.9450 and EER 0.1317 were shown in the UCSD Ped2 dataset, which shows performance improvement compared to the models in the previous studies.

A Study on Injection Nozzle and Internal Flow Velocity for Removing Air Bubbles inside the Sample Tanks during Hydraulic Rupture Test (수압파열시험 시 시료 탱크 내부 기포 제거를 위한 주입 노즐 및 내부 유속 연구)

  • Yeseung, Lee;Hyunseok, Yang;Woo-Chul, Jung;Dong Hoon, Lee;Man-Sik, Kong
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.9-15
    • /
    • 2022
  • In order to verify the durability of the high-pressure hydrogen tank in the operating pressure range, a hydraulic rupture test should be performed. However, if the bubbles generated by the initial injection process of water are attached to the inner wall of the tank and remain, a sudden pressure change of the bubbles during the rupture of the pressurized tank may cause shock and noise. Therefore, in this study, the flow velocity required to remove the bubbles remaining on the inner wall of the tank was predicted through simplified formulas, and the shape of the injection nozzle to maintain the flow velocity was determined based on the shape of the hydrogen tank for the hydrogen bus. In addition, a numerical model was developed to predict the change in flow velocity according to the inlet pressure, and an experiment was performed through a model tank to prove the validity of the prediction result. As a result of the experiment, the flow velocity near the tank wall was similar to the predicted value of the analysis model, and when the inlet pressure was 1.5 to 5.5 bar, the minimum size of the removable bubble was predicted to be about 2.2 to 4.6 mm.

The Transformation of Norms and Social Problems: Focusing on the COVID-19 Pandemic (규범의 전환과 사회문제: 코로나를 중심으로)

  • Lee, Jangju
    • Korean Journal of Culture and Social Issue
    • /
    • v.28 no.3
    • /
    • pp.513-527
    • /
    • 2022
  • This study was conducted to examining the socio-cultural impact of the COVID-19 pandemic that swept the world around 2020, and the transformation of norms and social problems due to COVID-19. For this, the characteristics of changes in the socio-cultural norms of the 14th century European Black Death, a representative example of the pandemic, were derived, and based on this, the COVID-19 pandemic was analyzed. The Black Death served as an opportunity to change social norms based on the existing religious authority and the power of the feudal system to the Enlightenment. The population declination and labor shortage also promoted commercialization and mechanization. Printing, which spread during this period, led to the popularization of knowledge, which raised the level of thinking and led to epochal scientific development. This became the foundation of the Industrial Revolution. Like the recent Black Death, COVID-19 has triggered changes in social norms. The technological environment of metaverse, a mixture of virtual and reality, has changed the norm of a consistent identity into free and open identities exerting various potentials through alternate characters. In addition, meme, which are about people being friendly to those with the same worldview as him on the metaverse, weakened the sense of isolation in non-face-to-face situations. Artificial intelligence (AI), which developed during the COVID-19 pandemic, has entered the stage of being used for creative activities beyond the function of assisting humans. Discussions were held on what new social problems would be created by the social norms changed due to the COVID-19 pandemic.

Christian Education Aiming for Homo Creators (호모 크레토스를 지향하는 기독교교육)

  • Kim, Hyung Hee
    • Journal of Christian Education in Korea
    • /
    • v.70
    • /
    • pp.141-173
    • /
    • 2022
  • The purpose of this study is to illuminate depersonalization in the flow of technological revolution and to present a Christian SARAMDAUM education that aims for a new human image. It represents the Christian SARAMDAUM education that adapts to, mediates, and offers alternatives to the technological and human evolutionary flow of the machine age. The purpose of education for this purpose is to aim for 'Homo Creators', creative human beings presented as a new human image in the age of technological revolution. The educational goal is to nurture creative human beings through creative interpretation, creative integration between disciplines, and personal dialogue in the post-mechanical/ post-conventional paradigm. The content of the education is a conversation with the SARAMDAUM that consiliences the characteristics of post-machine and post-convention. The educational method utilizes Edu-Tech and AIED(Artificial Intelligence in Education) to realize systemic thinking and SARAMDAUM dialogue of technology. In addition, the composition of teachers and learners, educational environment and educational evaluation is presented. The significance of this study is that from the point of view of Christian education, the identity of human beings in the era of the technological revolution has been identified, and research on the creative image of the human being is newly attempted, and the direction of Christian SARAMDAUM education aimed at this is presented. This can be said to be a Christian education that emphasizes the essential characteristics of human beings while accommodating the era of technological revolution.

Experience Design Guideline for Smart Car Interface (스마트카의 인터페이스를 위한 경험 디자인 가이드라인)

  • Yoo, Hoon Sik;Ju, Da Young
    • Design Convergence Study
    • /
    • v.15 no.1
    • /
    • pp.135-150
    • /
    • 2016
  • Due to the development of communication technology and expansion of Intelligent Transport System (ITS), the car is changing from a simple mechanical device to second living space which has comprehensive convenience function and is evolved into the platform which is playing as an interface for this role. As the interface area to provide various information to the passenger is being expanded, the research importance about smart car based user experience is rising. This study has a research objective to propose the guidelines regarding the smart car user experience elements. In order to conduct this study, smart car user experience elements were defined as function, interaction, and surface and through the discussions of UX/UI experts, 8 representative techniques, 14 representative techniques, and 8 locations of the glass windows were specified for each element. Following, the smart car users' priorities of the experience elements, which were defined through targeting 100 drivers, were analyzed in the form of questionnaire survey. The analysis showed that the users' priorities in applying the main techniques were in the order of safety, distance, and sensibility. The priorities of the production method were in the order of voice recognition, touch, gesture, physical button, and eye tracking. Furthermore, regarding the glass window locations, users prioritized the front of the driver's seat to the back. According to the demographic analysis on gender, there were no significant differences except for two functions. Therefore this showed that the guidelines of male and female can be commonly applied. Through user requirement analysis about individual elements, this study provides the guides about the requirement in each element to be applied to commercialized product with priority.

How Market Reacts on the Metaverse Initiatives? An Event Study (메타버스 투자 추진이 기업 가치에 미치는 영향 분석: 이벤트 연구 방법론)

  • Mina Baek;Jeongha Kim;Dongwon Lee
    • Information Systems Review
    • /
    • v.25 no.4
    • /
    • pp.183-204
    • /
    • 2023
  • Due to the COVID-19 pandemic, lots of occasions need to be held in online environment. This is the reason why "Metaverse" gets lots of attention in 2021. A number of companies made announcements on Metaverse, and this situation also boomed stock market. This paper investigates the relationship between Metaverse initiatives and business value of the firm (i.e., stock prices). We examine this relationship by using event study method with Lexis-Nexis News data from 2019 to 2021. The results indicate that Metaverse initiatives significantly impact positive influence on firm's value. In the technological perspective, technical factors affect more positive market returns, including Metaverse enablers (e.g., NFT, VR devices, digital twin) and common infrastructure (e.g., semiconductor, AI, cloud), and especially virtual environment was emphasized. Additionally, in the strategical perspective, radical innovation (e.g., pivoting, acquisition) impact more positive market return rather than incremental innovation (e.g., partnership, investment). Also, firms from non-service industries can achieve benefits from Metaverse initiatives rather than service industry in some degree.

Safety Verification Techniques of Privacy Policy Using GPT (GPT를 활용한 개인정보 처리방침 안전성 검증 기법)

  • Hye-Yeon Shim;MinSeo Kweun;DaYoung Yoon;JiYoung Seo;Il-Gu Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.207-216
    • /
    • 2024
  • As big data was built due to the 4th Industrial Revolution, personalized services increased rapidly. As a result, the amount of personal information collected from online services has increased, and concerns about users' personal information leakage and privacy infringement have increased. Online service providers provide privacy policies to address concerns about privacy infringement of users, but privacy policies are often misused due to the long and complex problem that it is difficult for users to directly identify risk items. Therefore, there is a need for a method that can automatically check whether the privacy policy is safe. However, the safety verification technique of the conventional blacklist and machine learning-based privacy policy has a problem that is difficult to expand or has low accessibility. In this paper, to solve the problem, we propose a safety verification technique for the privacy policy using the GPT-3.5 API, which is a generative artificial intelligence. Classification work can be performed evenin a new environment, and it shows the possibility that the general public without expertise can easily inspect the privacy policy. In the experiment, how accurately the blacklist-based privacy policy and the GPT-based privacy policy classify safe and unsafe sentences and the time spent on classification was measured. According to the experimental results, the proposed technique showed 10.34% higher accuracy on average than the conventional blacklist-based sentence safety verification technique.

A Method for Extracting Equipment Specifications from Plant Documents and Cross-Validation Approach with Similar Equipment Specifications (플랜트 설비 문서로부터 설비사양 추출 및 유사설비 사양 교차 검증 접근법)

  • Jae Hyun Lee;Seungeon Choi;Hyo Won Suh
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.2
    • /
    • pp.55-68
    • /
    • 2024
  • Plant engineering companies create or refer to requirements documents for each related field, such as plant process/equipment/piping/instrumentation, in different engineering departments. The process-related requirements document includes not only a description of the process but also the requirements of the equipment or related facilities that will operate it. Since the authors and reviewers of the requirements documents are different, there is a possibility that inconsistencies may occur between equipment or parts design specifications described in different requirement documents. Ensuring consistency in these matters can increase the reliability of the overall plant design information. However, the amount of documents and the scattered nature of requirements for a same equipment and parts across different documents make it challenging for engineers to trace and manage requirements. This paper proposes a method to analyze requirement sentences and calculate the similarity of requirement sentences in order to identify semantically identical sentences. To calculate the similarity of requirement sentences, we propose a named entity recognition method to identify compound words for the parts and properties that are semantically central to the requirements. A method to calculate the similarity of the identified compound words for parts and properties is also proposed. The proposed method is explained using sentences in practical documents, and experimental results are described.

The way to make training data for deep learning model to recognize keywords in product catalog image at E-commerce (온라인 쇼핑몰에서 상품 설명 이미지 내의 키워드 인식을 위한 딥러닝 훈련 데이터 자동 생성 방안)

  • Kim, Kitae;Oh, Wonseok;Lim, Geunwon;Cha, Eunwoo;Shin, Minyoung;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.1-23
    • /
    • 2018
  • From the 21st century, various high-quality services have come up with the growth of the internet or 'Information and Communication Technologies'. Especially, the scale of E-commerce industry in which Amazon and E-bay are standing out is exploding in a large way. As E-commerce grows, Customers could get what they want to buy easily while comparing various products because more products have been registered at online shopping malls. However, a problem has arisen with the growth of E-commerce. As too many products have been registered, it has become difficult for customers to search what they really need in the flood of products. When customers search for desired products with a generalized keyword, too many products have come out as a result. On the contrary, few products have been searched if customers type in details of products because concrete product-attributes have been registered rarely. In this situation, recognizing texts in images automatically with a machine can be a solution. Because bulk of product details are written in catalogs as image format, most of product information are not searched with text inputs in the current text-based searching system. It means if information in images can be converted to text format, customers can search products with product-details, which make them shop more conveniently. There are various existing OCR(Optical Character Recognition) programs which can recognize texts in images. But existing OCR programs are hard to be applied to catalog because they have problems in recognizing texts in certain circumstances, like texts are not big enough or fonts are not consistent. Therefore, this research suggests the way to recognize keywords in catalog with the Deep Learning algorithm which is state of the art in image-recognition area from 2010s. Single Shot Multibox Detector(SSD), which is a credited model for object-detection performance, can be used with structures re-designed to take into account the difference of text from object. But there is an issue that SSD model needs a lot of labeled-train data to be trained, because of the characteristic of deep learning algorithms, that it should be trained by supervised-learning. To collect data, we can try labelling location and classification information to texts in catalog manually. But if data are collected manually, many problems would come up. Some keywords would be missed because human can make mistakes while labelling train data. And it becomes too time-consuming to collect train data considering the scale of data needed or costly if a lot of workers are hired to shorten the time. Furthermore, if some specific keywords are needed to be trained, searching images that have the words would be difficult, as well. To solve the data issue, this research developed a program which create train data automatically. This program can make images which have various keywords and pictures like catalog and save location-information of keywords at the same time. With this program, not only data can be collected efficiently, but also the performance of SSD model becomes better. The SSD model recorded 81.99% of recognition rate with 20,000 data created by the program. Moreover, this research had an efficiency test of SSD model according to data differences to analyze what feature of data exert influence upon the performance of recognizing texts in images. As a result, it is figured out that the number of labeled keywords, the addition of overlapped keyword label, the existence of keywords that is not labeled, the spaces among keywords and the differences of background images are related to the performance of SSD model. This test can lead performance improvement of SSD model or other text-recognizing machine based on deep learning algorithm with high-quality data. SSD model which is re-designed to recognize texts in images and the program developed for creating train data are expected to contribute to improvement of searching system in E-commerce. Suppliers can put less time to register keywords for products and customers can search products with product-details which is written on the catalog.

Corporate Default Prediction Model Using Deep Learning Time Series Algorithm, RNN and LSTM (딥러닝 시계열 알고리즘 적용한 기업부도예측모형 유용성 검증)

  • Cha, Sungjae;Kang, Jungseok
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.1-32
    • /
    • 2018
  • In addition to stakeholders including managers, employees, creditors, and investors of bankrupt companies, corporate defaults have a ripple effect on the local and national economy. Before the Asian financial crisis, the Korean government only analyzed SMEs and tried to improve the forecasting power of a default prediction model, rather than developing various corporate default models. As a result, even large corporations called 'chaebol enterprises' become bankrupt. Even after that, the analysis of past corporate defaults has been focused on specific variables, and when the government restructured immediately after the global financial crisis, they only focused on certain main variables such as 'debt ratio'. A multifaceted study of corporate default prediction models is essential to ensure diverse interests, to avoid situations like the 'Lehman Brothers Case' of the global financial crisis, to avoid total collapse in a single moment. The key variables used in corporate defaults vary over time. This is confirmed by Beaver (1967, 1968) and Altman's (1968) analysis that Deakins'(1972) study shows that the major factors affecting corporate failure have changed. In Grice's (2001) study, the importance of predictive variables was also found through Zmijewski's (1984) and Ohlson's (1980) models. However, the studies that have been carried out in the past use static models. Most of them do not consider the changes that occur in the course of time. Therefore, in order to construct consistent prediction models, it is necessary to compensate the time-dependent bias by means of a time series analysis algorithm reflecting dynamic change. Based on the global financial crisis, which has had a significant impact on Korea, this study is conducted using 10 years of annual corporate data from 2000 to 2009. Data are divided into training data, validation data, and test data respectively, and are divided into 7, 2, and 1 years respectively. In order to construct a consistent bankruptcy model in the flow of time change, we first train a time series deep learning algorithm model using the data before the financial crisis (2000~2006). The parameter tuning of the existing model and the deep learning time series algorithm is conducted with validation data including the financial crisis period (2007~2008). As a result, we construct a model that shows similar pattern to the results of the learning data and shows excellent prediction power. After that, each bankruptcy prediction model is restructured by integrating the learning data and validation data again (2000 ~ 2008), applying the optimal parameters as in the previous validation. Finally, each corporate default prediction model is evaluated and compared using test data (2009) based on the trained models over nine years. Then, the usefulness of the corporate default prediction model based on the deep learning time series algorithm is proved. In addition, by adding the Lasso regression analysis to the existing methods (multiple discriminant analysis, logit model) which select the variables, it is proved that the deep learning time series algorithm model based on the three bundles of variables is useful for robust corporate default prediction. The definition of bankruptcy used is the same as that of Lee (2015). Independent variables include financial information such as financial ratios used in previous studies. Multivariate discriminant analysis, logit model, and Lasso regression model are used to select the optimal variable group. The influence of the Multivariate discriminant analysis model proposed by Altman (1968), the Logit model proposed by Ohlson (1980), the non-time series machine learning algorithms, and the deep learning time series algorithms are compared. In the case of corporate data, there are limitations of 'nonlinear variables', 'multi-collinearity' of variables, and 'lack of data'. While the logit model is nonlinear, the Lasso regression model solves the multi-collinearity problem, and the deep learning time series algorithm using the variable data generation method complements the lack of data. Big Data Technology, a leading technology in the future, is moving from simple human analysis, to automated AI analysis, and finally towards future intertwined AI applications. Although the study of the corporate default prediction model using the time series algorithm is still in its early stages, deep learning algorithm is much faster than regression analysis at corporate default prediction modeling. Also, it is more effective on prediction power. Through the Fourth Industrial Revolution, the current government and other overseas governments are working hard to integrate the system in everyday life of their nation and society. Yet the field of deep learning time series research for the financial industry is still insufficient. This is an initial study on deep learning time series algorithm analysis of corporate defaults. Therefore it is hoped that it will be used as a comparative analysis data for non-specialists who start a study combining financial data and deep learning time series algorithm.