• 제목/요약/키워드: 지능형 추천

검색결과 158건 처리시간 0.026초

사용자 프로파일 기반의 맞춤형 광고 서비스 및 양방향 개인 맞춤형 방송 시스템 구축 (The Development of the Bi-directionally Personalized Broadcasting and the Targeting Advertisement System Based on the User Profile Techniques)

  • 신사임;이종설;장세진;이석필
    • 방송공학회논문지
    • /
    • 제15권5호
    • /
    • pp.632-641
    • /
    • 2010
  • 본 논문은 양방향 개인 맞춤형 방송 시스템 구축에 관한 연구이다. 맞춤형 방송이란 사용자가 원하는 방송 프로그램만을 사용자가 원하는 시간에 볼 수 있게 하는 서비스를 말한다. 양방향 방송 서비스는 사용자의 방송단말과 방송 서버 사이의 양방향 데이터 전송을 허용하여 만족도 높고 개인화된 방송 서비스를 제공하는 것을 목표로 한다. 본 연구는 양방향 맞춤형 방송 서비스를 위한 사용자 프로파일 시스템을 개발하였다. 이 시스템은 맞춤형 방송 서비스를 위한 표준인 TV-Anytime에서 제안하고 있는 메타데이터를 기반으로 사용자 프로파일과 콘텐츠 데이터 및 맞춤형 광고 서비스를 포함한 맞춤형 방송의 다양한 기능을 포함하여 양방향 데이터 전송까지 지원하고 있다. 구축된 양방향 맞춤형 방송 시스템은 사용자 프로파일을 통하여 개인 별로 선호하는 방송 콘텐츠 및 광고를 추천 및 지원하여 사용자의 시청 만족도를 높였으며, 기존의 방송과 차별화된 지능적인 방송 서비스의 지원으로 사용자의 만족도를 증가시켰다.

GEase-K: 부가 정보를 활용한 선형 및 비선형 오토인코더 기반의 추천시스템 (GEase-K: Linear and Nonlinear Autoencoder-based Recommender System with Side Information)

  • 이태범;이승학;마민정;조윤호
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.167-183
    • /
    • 2023
  • 최근 추천시스템 분야에서는 희소한 데이터를 효과적으로 모델링하기 위한 다양한 연구가 진행되고 있다. GLocal-K(Global and Local Kernels for Recommender Systems)는 그중 하나의 연구로 전역 커널과 지역 커널을 결합하여 데이터의 전역적인 패턴과 개별 사용자의 특성을 모두 고려해 사용자 맞춤형 추천을 제공하는 모델이다. 하지만 GLocal-K는 커널 트릭을 사용하기 때문에 매우 희소한 데이터에서 성능이 떨어지고 부가 정보를 사용하지 않아 새로운 사용자나 아이템에 대한 추천을 제공하는 데 어려움이 있다. 본 논문에서는 이러한 GLocal-K의 단점을 극복하기 위해 EASE(Embarrassingly Shallow Autoencoders for Sparse Data) 모델과 부가 정보를 활용한 GEase-K(Global and EASE kernels for Recommender Systems) 모델을 제안한다. 우선 GLocal-K의 지역 커널 대신 EASE를 활용하여 매우 희소한 데이터에서 추천 성능을 높이고자 하였다. EASE는 단순한 선형 연산 구조로 이루어져 있지만, 규제화와 아이템 간 유사도 학습을 통해 매우 희소한 데이터에서 높은 성능을 내는 오토인코더이다. 다음으로 Cold Start 완화를 위해 부가 정보를 활용하였다. 학습 과정에서 부가 정보를 추가하기 위해 조건부 오토인코더 구조를 적용하였으며 이를 통해 사용자-아이템 간의 유사성을 더 잘 파악할 수 있도록 하였다. 결론적으로 GEase-K는 선형 구조와 비선형 구조의 결합, 부가 정보의 활용을 통해 매우 희소한 데이터와 Cold Start 상황에서 강건한 모습을 보인다. 실험 결과, GEase-K는 매우 희소한 GoodReads, ModCloth 데이터 세트에서 RMSE, MAE 평가 지표 기준 GLocal-K 보다 높은 성능을 보였다. 또한 GoodReads, ModCloth 데이터 세트를 4개의 집단으로 나누어 실험한 Cold Start 실험에서도 GLocal-K 대비 Cold Start 상황에서 좋은 성능을 보였다.

디지털 농업을 위한 딥러닝 기반의 환경 인자 추천 기술 연구 (A Study on Environmental Factor Recommendation Technology based on Deep Learning for Digital Agriculture)

  • 조한진
    • 스마트미디어저널
    • /
    • 제12권5호
    • /
    • pp.65-72
    • /
    • 2023
  • 스마트팜은 농업과 ICT의 융복합을 통해 농업의 생산뿐만 아니라 유통과 소비를 포함한 농업과 관련된 다양한 분야로 새로운 가치를 창출하는 것을 의미한다. 국내에서도 스마트 농업 확산을 위한 임대형 스마트팜을 조성하고, 스마트팜 빅데이터 플랫폼을 구축하여 데이터 수집·활용 촉진. 스마트 APC 확대, 온라인거래소 운영 및 도매시장 거래정보 디지털화 등 산지에서 소비지까지 농산물 유통 디지털 전환을 추진하고 있다. 이처럼 농업 데이터는 다양한 출처에서 특성에 따라 정보가 생성되고 있지만, 통계 및 정형화된 데이터를 이용한 서비스로만 활용되고 있다. 이는 농업에서 생산·유통·소비까지 분산된 데이터 수집으로 인해 한계가 있으며 다양한 출처로부터의 다양한 형태의 데이터를 수집·처리하기 어렵기 때문이다. 그러므로 본 논문에서는 디지털 농업을 위한 국내 농업 데이터 수집·공유 현황을 분석하고 인공지능 서비스를 위한 데이터 수집·연계 방법을 제안한다. 그리고 제안하는 데이터를 이용하여 딥러닝 기반의 환경 인자를 추천하는 방법을 제안한다.

서울지하철의 지능형 광고 비즈니스모델 설계 (Designing an Intelligent Advertising Business Model in Seoul's Metro Network)

  • ;임규건
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.1-31
    • /
    • 2017
  • 현대 기업들은 효율성과 생산성을 향상시킬 뿐 아니라 시장 진출을 위해 새로운 기술들을 채택하고 있다. 광고 업계도 전통적인 채널 (라디오, TV 및 인쇄 매체)에서 인터넷, 소셜 미디어, 모바일 기반광고와 같은 새로운 매체로 지속적인 파괴적 혁신을 경험하고 있다. 본 연구는 서울 지하철에 지능형 광고 비즈니스 모델을 제안한 사례이다. 서울은 세계에서 가장 분주 한 지하철 중 하나로서 메트로 네트워크를 통해 마케팅 담당자가 다양한 고객과 잠재 고객 모두와 교류하고 상호 작용할 수 있는 플랫폼이 될 수 있다. 현재의 광고 매체의 대부분은 공간, 조명 등 국부적 한계를 가지고 있으나 본 사례의 지능형 디지털 광고 플랫폼은 데이터로 구동되는 광고를 통해 위치기반 모바일 전자상거래를 제공할 수 있다. 등록된 지하철 카드를 통해 고객 데이터를 분석하고 특정 고객 그룹을 타겟팅하고, 대상 소비자 그룹을 기반으로 광고 사용자를 정의하고, 동영상, 애니메이션, 쿠폰, 문자 등 다양한 광고 형식을 제공 할 수 있다. 위치 정보를 통해 다음역을 탐지하여 지하철 안의 스크린이 다음 정차 할 역의 광고에 우선 순위를 부여하고, 사용자 모바일에서 알림을 수신하도록 선택한 고객은 광고주의 사업장 근처에 접근 할 때 알림을 받게 된다. 또한, 내비게이션 서비스를 통해 지하 쇼핑몰의 고객이 상점, 제품, 시설, 이벤트 등을 검색하고 광고나 추천서비스를 받을 수 있게 한다. 이러한 광고는 고객이 광고를 클릭하면 제품 설명 페이지로 연결되어 전자 상거래로 이어지도록 한다. 이 모델을 통해 개선된 고객 경험뿐만 아니라 지하상가의 중소기업 지원, 새로운 직업 기회, 비즈니스 모델 운영자에 대한 추가 매출 및 광고 유연성 등 새로운 가치 창출이 가능할 것으로 기대된다.

LLM 애플리케이션 아키텍처를 활용한 생성형 AI 서비스 구현: RAG모델과 LangChain 프레임워크 기반 (Generative AI service implementation using LLM application architecture: based on RAG model and LangChain framework)

  • 정천수
    • 지능정보연구
    • /
    • 제29권4호
    • /
    • pp.129-164
    • /
    • 2023
  • 최근 생성형 AI 기술의 발전으로 인해 대형 언어 모델(Large Language Model, LLM)의 활용 및 도입이 확대되고 있는 상황에서 기존 연구들은 기업내부 데이터의 활용에 대한 실제 적용사례나 구현방법을 찾아보기 힘들다. 이에 따라 본 연구에서는 가장 많이 이용되고 있는 LangChain 프레임워크를 이용한 LLM 애플리케이션 아키텍처를 활용하여 생성형 AI 서비스를 구현하는 방법을 제시한다. 이를 위해 LLM의 활용을 중심으로, 정보 부족 문제를 극복하는 다양한 방법을 검토하고 구체적인 해결책을 제시하였다. 이를 위해 파인튜닝이나 직접 문서 정보를 활용하는 방법을 분석하며, 이러한 문제를 해결하기 위한 RAG 모델을 활용한 정보 저장 및 검색 방법에 대해 주요단계에 대해 자세하게 살펴본다. 특히, RAG 모델을 활용하여 정보를 벡터저장소에 저장하고 검색하기 위한 방법으로 유사문맥 추천 및 QA시스템을 활용하였다. 또한 구체적인 작동 방식과 주요한 구현 단계 및 사례를 구현소스 및 사용자 인터페이스까지 제시하여 생성형 AI 기술에 대한 이해를 높였다. 이를 통해 LLM을 활용한 기업내 서비스 구현에 적극적으로 활용할 수 있도록 하는데 의미와 가치가 있다.

웹툰 콘텐츠 추천을 위한 소비자 감성 패턴 맵 개발 (Development of Customer Sentiment Pattern Map for Webtoon Content Recommendation)

  • 이준식;박도형
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.67-88
    • /
    • 2019
  • 웹툰은 인터넷의 특징적 요소들을 활용하여 제작되는 만화 콘텐츠를 온라인 환경에서 소비 가능한 형태로 유통하는 한국형 디지털 만화 플랫폼이다. 최근 웹툰 산업의 급격한 성장과 함께 웹툰 콘텐츠의 공급량이 기하급수적으로 증가함에 따라, 효과적인 웹툰 콘텐츠 추천 방안의 필요성이 커지고 있다. 웹툰은 회화적 요소와 문학적 요소, 디지털 요소의 복합적 산물로서, 독자로 하여금 재미를 느끼게 하고 웹툰이 연출하는 상황에 이입·공감하게 하는 등 소비자의 감성을 자극하는 디지털 콘텐츠 상품이다. 따라서 웹툰이 소비자에게 전달하는 감성이 소비자가 웹툰을 선택함에 있어 중요한 기준으로 작용할 것이라 기대할 수 있다. 본 연구는 기존에 충분히 논의되지 않았던 소비자 감성을 중심으로, 웹툰 콘텐츠의 효과적인 추천을 지원할 수 있는 소비자 감성 패턴맵의 개발을 목적으로 한다. 본 연구의 수행을 위해 '네이버 웹툰' 플랫폼에서 서비스되는 200개 작품에 대한 메타데이터와 소비자 감성어휘 정보를 수집하였다. 분석 목적에 부합하지 않는 작품을 제외한 127개 작품에 대해 488개의 감성어휘가 수집되었다. 이후 수집된 감성어휘들 간 유사감성 통합, 중복감성 배제 과정을 Bottom-up 접근으로 수행하여 총 63개 감성유형으로 축소된 웹툰 특화 감성지표를 구축하였다. 구축한 감성지표에 대한 탐색적 요인분석을 수행하여 웹툰 유형을 분류할 수 있는 3개의 중요 차원을 도출하고, 이를 기준으로 K-Means 클러스터링을 수행하여 전체 웹툰을 4개 유형으로 분류하였다. 각각의 유형에 대해 웹툰-감성 2-Mode 네트워크를 구축하여 웹툰 유형별로 나타나는 감성 패턴의 특징을 살펴보았으며, 프로파일링 분석을 통해 웹툰 유형별 인사이트와 실무적으로 의미 있는 전략적 시사점을 도출할 수 있었다. 본 연구의 결과를 통해 웹툰의 추천 및 분류의 영역에서 소비자 감성의 활용 가능성을 확인하고, 웹툰 생태계 내 구성원들이 소비자를 보다 잘 이해하고 전략을 수립할 수 있도록 돕는 가이드라인을 제시하였다는 점에서 의의가 있다.

텍스트 마이닝을 활용한 지역 특성 기반 도시재생 유형 추천 시스템 제안 (Suggestion of Urban Regeneration Type Recommendation System Based on Local Characteristics Using Text Mining)

  • 김익준;이준호;김효민;강주영
    • 지능정보연구
    • /
    • 제26권3호
    • /
    • pp.149-169
    • /
    • 2020
  • 현 정부의 주요 국책사업 중 하나인 도시재생 뉴딜사업은 매년 100 곳씩, 5년간 500곳을대상으로 50조를 투자하여 낙후된 지역을 개발하는 것으로 언론과 지자체의 높은 이목이 집중되고 있다. 그러나, 현재 이 사업모델은 면적 규모에 따라 "우리동네 살리기, 주거정비지원형, 일반근린형, 중심시가지형, 경제기반형" 등 다섯 가지로 나뉘어 추진되어 그 지역 본래의 특성을 반영하지 못하고 있다. 국내 도시재생 성공 키워드는 "주민 참여", "지역특화" "부처협업", "민관협력"이다. 성공 키워드에 따르면 지자체에서 정부에게 도시재생 사업을 제안할 때 지역주민, 민간기업의 도움과 함께 도시의 특성을 정확히 이해하고 도시의 특성에 어울리는 방향으로 사업을 추진하는 것이 가장 중요하다는 것을 알 수 있다. 또한 도시재생 사업 후 발생하는 부작용 중 하나인 젠트리피케이션 문제를 고려하면 그 지역 특성에 맞는 도시재생 유형을 선정하여 추진하는 것이 중요하다. 이에 본 연구는 '도시재생 뉴딜 사업' 방법론의 한계점을 보완하기 위해, 기존 서울시가 지역 특성에 기반하여 추진하고 있는 "2025 서울시 도시재생 전략계획"의 도시재생 유형을 참고하여 도시재생 사업지에 맞는 도시재생 유형을 추천하는 시스템을 머신러닝 알고리즘을 활용하여 제안하고자 한다. 서울시 도시재생 유형은 "저이용저개발, 쇠퇴낙후, 노후주거, 역사문화자원 특화" 네 가지로 분류된다 (Shon and Park, 2017). 지역 특성을 파악하기 위해 총 4가지 도시재생 유형에 대해 사업이 진행된 22개의 지역에 대한 뉴스 미디어 10만여건의 텍스트 데이터를 수집하였다. 수집된 텍스트를 이용하여 도시재생 유형에 따른 지역별 주요 키워드를 도출하고 토픽모델링을 수행하여 유형별 차이가 있는 지 탐색해 보았다. 다음 단계로 주어진 텍스트를 기반으로 도시재생 유형을 추천하는 추천시스템 구축을 위해 텍스트 데이터를 벡터로 변환하여 머신러닝 분류모델을 개발하였고, 이를 검증한 결과 97% 정확도를 보였다. 따라서 본 연구에서 제안하는 추천 시스템은 도시재생 사업을 진행하는 과정에서 신규 사업지의 지역 특성에 기반한 도시재생 유형을 추천할 수 있을 것으로 기대된다.

감성기반 음악.이미지 검색 추천 시스템 설계 및 구현 (A Design and Implementation of Music & Image Retrieval Recommendation System based on Emotion)

  • 김태연;송병호;배상현
    • 전자공학회논문지CI
    • /
    • 제47권1호
    • /
    • pp.73-79
    • /
    • 2010
  • 감성 지능형 컴퓨팅은 컴퓨터가 학습과 적응을 통하여 인간의 감성을 처리할 수 있는 감성인지 능력을 갖는 것으로 보다 효율적인 인간과 컴퓨터의 상호 작용을 가능하게 한다. 감성 정보들 중 시각과 청각 정보인 음악 이미지는 짧은 시간에 형성되고 기억에 오랫동안 지속되기 때문에 성공적인 마케팅에 있어서 중요한 요인으로 꼽히고 있으며, 인간의 정서를 이해하고 해석하는데 있어서 매우 중요한 역할을 한다. 본 논문에서는 사용자의 감성키워드(짜증, 우울, 차분, 기쁨)를 고려하여 매칭된 음악과 이미지를 검색하는 시스템을 구축하였다. 제안된 시스템은 인간의 감성을 4단계 경우로 상황을 정의하며, 정규화 된 음악과 이미지를 검색하기 위해 음악 이미지 온톨로지와 감성 온톨로지를 사용하였으며, 이미지의 특징정보를 추출, 유사성을 측정하여 원하는 결과를 얻게 하도록 하였다. 또한, 이미지 감성인식정보를 분류하기위해 대응일치분석과 요인분석을 통한 성컬러와 감성어휘를 하나의 공간에 매칭하였다. 실험결과 제안된 시스템은 4가지 감성상태에 대해 82.4%의 매칭율를 가져올 수 있었다.

Travel mode classification method based on travel track information

  • Kim, Hye-jin
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권12호
    • /
    • pp.133-142
    • /
    • 2021
  • 이동 패턴 인식은 사용자 궤적 질의, 사용자 행동 예측, 사용자 위치에 기초한 흥미요소 추천, 사용자 개인 정보 보호 및 지자체 교통 계획과 같은 여러 측면에서 널리 사용된다. 현재 인식 정확도는 응용 요건을 충족할 수 없기 때문에 이동 패턴 인식 연구는 궤적 데이터 연구의 초점이라 할 수 있다. GPS 내비게이션 기술과 지능형 모바일 기기의 대중화로 많은 사용자 모바일 데이터 정보를 얻을 수 있고, 이를 바탕으로 많은 의미 있는 연구가 이루어질 수 있다. 현재의 이동 패턴 연구 방법에서 궤적의 특징 추출은 궤도의 기본 속성(속도, 각도, 가속도 등)으로 제한된다. 본 논문에서 순열 엔트로피는 궤적 분류 연구에 참여하기 위한 궤적의 고유값으로 사용되었으며 시계열의 복잡성을 측정하기 위한 속성으로도 사용되었다. 속도 순열 엔트로피와 각도 순열 엔트로피가 이동 패턴 분류에 참여하기 위한 궤적의 특성으로 사용되었으며, 본 논문에서 사용된 순열 엔트로피를 기반으로 한 속성 분류의 정확도는 81.47%에 달했다.

빅데이터와 AI를 활용한 교육용 자료의 분석에 대한 조사 (A Survey on Deep Learning-based Analysis for Education Data)

  • 노영욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.240-243
    • /
    • 2021
  • 최근에 빅 데이터와 AI 기술을 교육의 평가와 개별 학습에 적용하는 연구 성과가 있었다. 정보 기술의 혁신으로 소셜 미디어, MOOC, 지능형 개인지도 시스템, LMS, 센서 및 모바일 장치 등으로부터 학생들의 개인 기록, 생리학적 데이터, 학습 로그 및 활동, 학습 성과 및 결과를 포함하는 동적이고 복잡한 데이터를 수집 가능하였다. 또한 COVID-19 환경에서 e-러닝이 활성화 되어 많은 양의 학습 데이터가 생성되었다. 이 데이터로부터 학습 분석과 AI 기술을 적용하여 의미있는 패턴의 추출과 지식의 발견이 될 것으로 예상된다. 학습자 측면에서 학생의 학습 및 정서적 행동 패턴과 프로필을 식별하고, 평가 및 평가 방법을 개선하고, 개별 학생의 학습 성과 또는 중퇴를 예측하고, 개인화 된 지원을 위한 적응 시스템에 대한 연구는 필요하다. 본 연구에서는 교육용 데이터를 대상으로 이상탐지와 추천시스템에서 사용하는 기계학습 기술에 대한 조사와 분류를 하여 교육 분야의 연구에 기여하고자 한다.

  • PDF