• Title/Summary/Keyword: 지능보행

Search Result 193, Processing Time 0.024 seconds

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

A Study on Intelligent Mobility Enhancement System for the Mobility Handicapped (첨단 교통약자 보호시스템에 대한 연구)

  • Han, Woong-Gu;Shin, Kang-Won;Choi, Kee-Choo;Kim, Nam-Sun;Sohn, Sang-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.25-37
    • /
    • 2010
  • This study is aimed at enhancing mobility rights for the transportation underprivileged that has been made light of relatively compared to normal people. In order to do this, we've suggested having ITS (Intelligent Traffic System) built and improving satisfaction through the test operation of its main system. The existing sound signal device for the visually handicapped has one problem with managing it. Because, the people in charge of it had to visit each problematic site directly to maintain and fix some problems every time it was out of order. Moreover, it couldn't provide sustainable services about voice guidance and the visually handicapped had to control it by either confirming the location of buttons that were installed on the pillar of traffic light and then pressing one of them or using a remote controller on their own. In order to improve such inconveniences, we have created a new typed sound signal device for the visually handicapped by applying the cutting-edge wireless technology based on ergonomics considering actual road situations. Such technology enables it report the status of signal device and light to them by using its voice guidance system automatically every time they have access to it. Additionally, we've already introduced it to a couple of test areas and then known the fact that they recognized traffic situation more conveniently and safely compared to the existing sound signal device. That is above average in terms of satisfaction. In addition to that, we've provided LTS (Location Tracking System - Location-based service intended for elementary students) by utilizing the existing wireless infrastructure and founded the fact that about 87% of their parents were satisfied with the service based on LTS.

The National Highway, Expressway Tunnel Video Incident Detection System performance analysis and reflect attributes for double deck tunnel in great depth underground space (국도, 고속국도 터널 영상유고감지시스템 성능분석 및 대심도 복층터널 특성반영 방안)

  • Kim, Tae-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1325-1334
    • /
    • 2016
  • The video incident detection System is a probe for rapid detecting the walker, falling, stopped, backwards, smoke situation in tunnel. Recently, the importance is increases from the downtown double deck tunnel in great depth underground space[1], but the legal basis is weak and the vulnerable situation experimental data. So, In this paper, we introduce a long-term log data analysis information in the tunnenl video incident detection system installed and experimental results in order to verify the feasibility of apply to video incident detection system for the double deck tunnel. It is proposed a few things about derives the problem of existing video incident detection system, improvements and reflect attributes for double deck tunnel. The contents described in this paper will contribute to refine the prototype of video incident detection system will apply to future double deck multi-layer tunnels.

Traffic Object Tracking Based on an Adaptive Fusion Framework for Discriminative Attributes (차별적인 영상특징들에 적응 가능한 융합구조에 의한 도로상의 물체추적)

  • Kim Sam-Yong;Oh Se-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.5 s.311
    • /
    • pp.1-9
    • /
    • 2006
  • Because most applications of vision-based object tracking demonstrate satisfactory operations only under very constrained environments that have simplifying assumptions or specific visual attributes, these approaches can't track target objects for the highly variable, unstructured, and dynamic environments like a traffic scene. An adaptive fusion framework is essential that takes advantage of the richness of visual information such as color, appearance shape and so on, especially at cluttered and dynamically changing scenes with partial occlusion[1]. This paper develops a particle filter based adaptive fusion framework and improves the robustness and adaptation of this framework by adding a new distinctive visual attribute, an image feature descriptor using SIFT (Scale Invariant Feature Transform)[2] and adding an automatic teaming scheme of the SIFT feature library according to viewpoint, illumination, and background change. The proposed algorithm is applied to track various traffic objects like vehicles, pedestrians, and bikes in a driver assistance system as an important component of the Intelligent Transportation System.

A Study on Intelligent Control of Real-Time Working Motion Generation of Bipped Robot (2족 보행로봇의 실시간 작업동작 생성을 위한 지능제어에 관한 연구)

  • Kim, Min-Seong;Jo, Sang-Young;Koo, Young-Mok;Jeong, Yang-Gun;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In this paper, we propose a new learning control scheme for various walk motion control of biped robot with same learning-base by neural network. We show that learning control algorithm based on the neural network is significantly more attractive intelligent controller design than previous traditional forms of control systems. A multi layer back propagation neural network identification is simulated to obtain a dynamic model of biped robot. Once the neural network has learned, the other neural network control is designed for various trajectory tracking control with same learning-base. The biped robots have been received increased attention due to several properties such as its human like mobility and the high-order dynamic equation. These properties enable the biped robots to perform the dangerous works instead of human beings. Thus, the stable walking control of the biped robots is a fundamentally hot issue and has been studied by many researchers. However, legged locomotion, it is difficult to control the biped robots. Besides, unlike the robot manipulator, the biped robot has an uncontrollable degree of freedom playing a dominant role for the stability of their locomotion in the biped robot dynamics. From the simulation and experiments the reliability of iterative learning control was illustrated.

Problems of autonomous car and recognition of light (자율주행자동차의 문제점과 빛의 인식)

  • Son, Hye-Jin;Yu, Seo-Yeong;Kim, Ki-Hwan;Lee, Hoon-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.683-686
    • /
    • 2018
  • Autonomous vehicles are the 4th industrial revolution that utilizes artificial intelligence(AI) and superconducting technology, and is a world-wide investment and research project. However, a Uber vehicle under test in Arizona, USA, was accidentally killed by pedestrians crossing the road in the dark night, and accidents occurred when the Tesla vehicle was exposedto the backlightof the sun. These problems were caused by misunderstandings and choice about sensors mounted on autonomous vehicles due to bad weather such as snow, rain, and sunlight. In this paper, we analyze the composition of the autonomous vehicle and the cause of the accident, and consider the criteria that should be judged in case of emergency in which human accidents may occur. This paper analyzes the composition of autonomous vehicles and causes of accidents, and considers the criteria that should be choice in an emergency where an accident may occur.

  • PDF

Development of Fire Detection Algorithm for Video Incident Detection System of Double Deck Tunnel (복층터널 영상유고감지시스템의 화재 감지 알고리즘 개발)

  • Kim, Tae-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1082-1087
    • /
    • 2019
  • Video Incident Detection System is a detection system for the purpose of detection of an emergency in an unexpected situation such as a pedestrian in a tunnel, a falling object, a stationary vehicle, a reverse run, and a fire(smoke and flame). In recent years, the importance of the city center has been emphasized by the construction of underpasses in great depth underground space. Therefore, in order to apply Video Incident Detection System to a Double Deck Tunnel, it was developed to reflect the design characteristics of the Double Deck Tunnel. and In this paper especially, the fire detection technology, which is not it is difficult to apply to the Double Deck Tunnel environment because it is not supported on existing Video Incident Detection System or has a fail detect, we propose fire detection using color image analysis, silhouette spread, and statistical properties, It is verified through a real fire test in a double deck tunnel test bed environment.

A Study of Tram-Pedestrian Collision Prediction Method Using YOLOv5 and Motion Vector (YOLOv5와 모션벡터를 활용한 트램-보행자 충돌 예측 방법 연구)

  • Kim, Young-Min;An, Hyeon-Uk;Jeon, Hee-gyun;Kim, Jin-Pyeong;Jang, Gyu-Jin;Hwang, Hyeon-Chyeol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.561-568
    • /
    • 2021
  • In recent years, autonomous driving technologies have become a high-value-added technology that attracts attention in the fields of science and industry. For smooth Self-driving, it is necessary to accurately detect an object and estimate its movement speed in real time. CNN-based deep learning algorithms and conventional dense optical flows have a large consumption time, making it difficult to detect objects and estimate its movement speed in real time. In this paper, using a single camera image, fast object detection was performed using the YOLOv5 algorithm, a deep learning algorithm, and fast estimation of the speed of the object was performed by using a local dense optical flow modified from the existing dense optical flow based on the detected object. Based on this algorithm, we present a system that can predict the collision time and probability, and through this system, we intend to contribute to prevent tram accidents.

Queue Length Based Real-Time Traffic Signal Control Methodology Using sectional Travel Time Information (구간통행시간 정보 기반의 대기행렬길이를 이용한 실시간 신호제어 모형 개발)

  • Lee, Minhyoung;Kim, Youngchan;Jeong, Youngje
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • The expansion of the physical road in response to changes in social conditions and policy of the country has reached the limit. In order to alleviate congestion on the existing road to reconsider the effectiveness of this method should be asking. Currently, how to collect traffic information for management of the intersection is limited to point detection systems. Intelligent Transport Systems (ITS) was the traffic information collection system of point detection method such as through video and loop detector in the past. However, intelligent transportation systems of the next generation(C-ITS) has evolved rapidly in real time interval detection system of collecting various systems between the pedestrian, road, and car. Therefore, this study is designed to evaluate the development of an algorithm for queue length based real-time traffic signal control methodology. Four coordinates estimate on time-space diagram using the travel time each individual vehicle collected via the interval detector. Using the coordinate value estimated during the cycle for estimating the velocity of the shock wave the queue is created. Using the queue length is estimated, and determine the signal timing the total queue length is minimized at intersection. Therefore, in this study, it was confirmed that the calculation of the signal timing of the intersection queue is minimized.

Analysis of Daily Internet·Gaming·Smartphone Habit and Preference Factors of Moral Machine (인터넷·게임·스마트폰생활 습관과 모랄머신 선호도 요인 분석)

  • Park, SunJu
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.1
    • /
    • pp.21-28
    • /
    • 2020
  • Technological advancements such as artificial intelligence, robots, and big data are revolutionizing the entire society. In this paper, we analyzed preliminary teachers' daily internet/gaming/smartphone habit and the difference between preference factors in gender and diagnosis group in the situation of ethical dilemma in driverless cars. The result shows most of the male students are in high risk group of daily internet/gaming usage, and male students tend to be more immersed in games compared to female students, which negatively affects their daily lives. Students who have at least one of the daily internet/gaming/smartphone habits are more likely to be classified as high-risk group in all three of daily internet/gaming/smartphone habit. Fortunately, the students perceived themselves addicted and wanted change their habits. An analysis by a moral machine of these students tells that there is no significant difference in preference between male and female students and among diagnosis groups. However, specifically in the ethical dilemma of driverless cars, all the groups of male, female, normal, high-risk showed they have priority in pedestrians over drivers, a large number of people over small, and people who obey traffic rules over who do not. The tendency was pronounced in female group and high-risk students prioritized people who are older and in lower social status.