• Title/Summary/Keyword: 지내력

Search Result 112, Processing Time 0.112 seconds

Analytical Structural Stability Evaluation for H-section Beams Made of Ordinary Structural Steels Based on Boundary Conditions at High Temperatures (일반 구조용 강재 적용 정정 및 부정정 보부재의 고온 시 해석적 내력 평가 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.33-38
    • /
    • 2015
  • Loads applied on the floor are transferred through beams to columns. The beams can be designed as both end fixed or simple beams. The load bearing capacity of a beam depends on each boundary condition. However, when the load bearing capacity of a beam is evaluated in fire tests, all kinds of beams are tested using simple beam conditions. In this study, an analytical method performed using heat transfer theory and heat stress analysis based on the mechanical and thermal properties of SS-400 steel at high temperature. This method was used to clarify the differences between the two types of boundary conditions at normal and high temperature. The results show that the load bearing capacity of a both-end fixed beam at high temperature is superior to that of a simple beam. Therefore, the application of simple beam conditions in fire tests for evaluation of load bearing capacity is conservatively safe compared to fixed boundary conditions.

Characteristics of Flexural Capacity and Ultrasonic in RC member with Corroded Steel and FRP Hybrid Bar (부식된 FRP Hybrid Bar의 휨 내력 및 초음파 속도 특성)

  • Choi, Se-Jin;Mun, Jin-Man;Park, Ki-Tae;Park, Cheol-Woo;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.8
    • /
    • pp.397-407
    • /
    • 2015
  • Concrete is a attractive construction material, however durability problem occur due to steel corrosion, which leads propagation to structural safety problem. The recently developed FRP (Fiber Reinforced Plastic) Hybrid Bar has an engineering merit of both structural steel and FRP. Accelerated corrosion test for RC (Reinforced Concrete) samples with normal steel and FRP Hybriud Bar are performed and their flexural capacity is evaluated. Furthermore UV(Ultrasonic Velocity) measurement is attempted for analysis of variation of UV due to corrosion condition. After corrosion test, there is no significant reduction in RC beam with FRP hybrid bar but 11.5% of reduction in the case of normal steel is evaluated with 3.3% of UV reduction. For commercial production of FRP hybrid bar, bond strength evaluation through long-term submerged corrosion is required.

Evaluation of Structural Stability at High Temperature for H-section Beams Made of Ordinary Strength Steels by Analytic Method (일반 구조용 강재 적용 H형강 보부재의 해석에 의한 고온내력 평가 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.28 no.2
    • /
    • pp.76-81
    • /
    • 2014
  • Structural stability of structural beams at high temperature had been evaluated though a horizontal furnace and a standard fire curve. If a structural method and a material are satisfied with the fire test, those are seemed to be guaranteed the safety of residences, fire services men, and properties of the buildings. However, that requires not only longer period but higher cost for making and testing of each structural element. That restrained from developing new methods and new fire protective materials. In this study, an analytic method was executed to demonstrate whether the analytic method using mechanical properties of structural steel at high temperature with heat transfer theory works is working. In this paper, the surface temperature rising and variance of structural stability of a simple H-section beam with a standard fire curve were evaluated and structural stabilities of H-section beam according to differences from length of beam were suggested.

A Study on the Properties of SM 400 for Evaluation of Structural Stability at High Temperature (고온 시의 구조내력 평가를 위한 SM 400강재의 고온 특성 평가 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.27 no.4
    • /
    • pp.7-12
    • /
    • 2013
  • Recently, the risk of fire outbreak is going up because of newly developed combustible materials are intended to apply more. Especially the steel framed structure can lose its load-bearing capacity when it is exposed to higher temperature condition such as a fire. So the pre-evaluation of fire resistance of the structure is very essential that the mechanical properties of yield strength and elastic modulus and thermal properties such as conductivity and linear expansion be required. To get the databases for SM 400 or welding structural steels at high temperature, various temperature conditions were used for deriving the yield strength, elastic modulus, linear expansion, and conductivity and the results were compared to those of SS 400, ordinary structural steel, respectively.

Design Strength of Coupled Shear Wall System according to Variation of Strength and Stiffness of Coupled Shear Wall (병렬전단벽의 강도와 강성이 커플링보의 설계내력에 미치는 영향)

  • Yoon, Tae-Ho;Kim, Jin-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.743-750
    • /
    • 2016
  • In this research, the effects of the strength and stiffness of shear walls on the design strength of coupling beams are studied in the shear wall-coupling beam structural system widely used as the lateral-drift resistant system of high-rise buildings. The results show that the design strength of the coupling beams decreases with decreasing concrete strength and core wall thickness, but the shape remains unchanged. In all six models, the design strength of the coupling beams has the largest value at the 10~15th floors in a 40-story building. In other words, the design strength of the coupling beams has the largest value at 0.25H~0.375H where the inflection point exists. The thicker the walls, the smaller the change in the member forces. The thickness of the coupled shear walls has more influence on the design strength of the coupling beams than the concrete strength.

Analysis of Relation between Foundation Stiffness and Deformation below Widening Portland Cement Concrete Pavement Sections (시멘트 콘크리트 포장확장시 포장하부지반의 강성과 변위발생의 상관성 분석)

  • Yang, Sung-Chul;Lim, Yu-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.41-49
    • /
    • 2009
  • Poor compaction of subgrade soil causes low stiffness and bearing capacity of sublayers so that faulting and differential settlements can be generated between new and old pavement surfaces in case of widening works. However, investigation of verifying the reason of producing the defects in the pavements are not performed in detail. In this study, several in-field tests including PMT and PBT were performed for obtaining stiffness of the sublayers in new and old pavements respectively of an widening project. Then, based on the obtained stiffness values and the measured deformations obtained by specially designed tilt meters, the main reasons of generating different deformations between the old and new pavement sections and the relationship between the deformation and stiffness are verified.

Foundation Methods for the Soft Ground Reinforcement of Lightweight Greenhouse on Reclaimed Land: A review (간척지 온실 기초 연약지반 보강 방법에 대한 고찰)

  • Lee, Haksung;Kang, Bang Hun;Lee, Su Hwan
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.440-447
    • /
    • 2020
  • The demand for large-scale horticultural complexes utilizing reclaimed lands is increasing, and one of the pending issues for the construction of large-scale facilities is to establish foundation design criteria. In this paper, we tried to review previous studies on the method of reinforcing the foundation of soft ground. Target construction methods are spiral piles, wood piles, crushed stone piles and PF (point foundation) method. In order to evaluate the performance according to the basic construction method, pull-out resistance, bearing capacity, and settlement amount were measured. At the same diameter, pull-out resistance increased with increasing penetration depth. Simplified comparison is difficult due to the difference in reinforcement method, diameter, and penetration depth, but it showed high bearing capacity in the order of crushed stone pile, PF method, and wood pile foundation. In the case of wood piles, the increase in uplift resistance was different depending on the slenderness ratio. Wood, crushed stone pile and PF construction methods, which are foundation reinforcement works with a bearing capacity of 105 kN/㎡ to 826 kN/㎡, are considered sufficient methods to be applied to the greenhouse foundation. There was a limitation in grasping the consistent trend of each foundation reinforcement method through existing studies. If these data are supplemented through additional empirical tests, it is judged that a basic design guideline that can satisfy the structure and economic efficiency of the greenhouse can be presented.

Development of 400 kV Oil-filled Power Cable and Joints Insulated with Polypropylene Laminated Paper (400 kV급 반합성지 전력케이블 및 접속함 개발)

  • Youn, B.H.;Kim, D.W.;Kim, J.N.;Kim, Seong-Yun;Lee, S.J.;Kim, J.S.;Shin, H.Y.;Lee, I.H.;Lim, C.H.;Park, W.K.
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.155-157
    • /
    • 2006
  • 송전전압이 점차 초고압화되면서 절연체의 유전특성을 개선하여 송전용량을 향상시키고, 절연내력을 높여 케이블 외경을 저감시키려는 시도에 따라 우수한 유전특성 및 절연내력을 갖는 폴리머 절연층과 기계적 특성, 절연유와의 적합성이 우수한 크라프트지의 장점을 혼합시킨 반합성지가 개발되어 전력케이블의 주절연재료로 사용되고 있다. 본 논문은 LS전선이 국내최초로 개발한 400 kV급 반합성지 전력케이블 및 접속함 개발과정 및 이와 관련된 요소기술에 대해 기술하였다. 송전시스템에서 요구되는 유전특성의 반합성지를 설계 제작하여, 기존 크라프트 절연지 대비 유전손실은 50% 수준, 절연내력은 125%이상의 반합성지를 개발하였고, 반합성지 고유의 특성인 팽윤율을 조절하여 케이블을 제조하였다. 반합성지 절연 케이블에 필요한 접속함에서는 보강절연재로 케이블과 동일한 반합성지를 사용하여 전체적인 3기를 감소시키고, 열저항성을 줄이고자 노력하였다. 또한, 접속함 조립공정에 필요한 저온연공법을 개발하여 반합성지에 열적 스트레스를 최소화하였다. 상기 관련기술의 개발 결과로, IEC 60141, AEIC CS2-97 및 NGTS 3.5.1에 근거하여 400 kV급 반합성지 OF 케이블 및 접속함에 대해 국제 공인기관인 KEMA의부터 Type Test을 인증받았다.

  • PDF

The Experiment and Design Formula of Rectangular CFT Columns Reinforced by Carbon Fiber Sheets (탄소섬유쉬트로 보강된 각형 CFT기둥의 실험 및 설계식)

  • Park, Jai-Woo;Chung, Sung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.4024-4030
    • /
    • 2010
  • Axial load tests and cyclic load tests for FRP reinforced rectangular CFT columns were carried out The main parameters were width-thickness ratio of a steel tubeand FRP layer numbers for the axial load tests and were concrete strength and FRP layer numbers for cyclic load tests. The maximum strength and ductility capacity were compared between the current CFT columns and the FRP reinforced CFT columns. Finally, the axial design formulas were presented for the FRP reinforced CFT columns.

화재원인조사실무 - 발화원의 감정(V)

  • Kim, Yun-Hoe
    • 방재와보험
    • /
    • s.108
    • /
    • pp.30-35
    • /
    • 2005
  • 배선기구는 오랜 시간이 경과하면 절연성이 저하하거나 접촉부분이 탄화되어 발열 또는 발화원이 될 수 있다. 절연재료의 파손, 이상전압에 의한 절연파괴, 허용전류를 넘는 과전류에 의한 열적열화 등은 절연내력이 점차지하하여 마침내 절연재료의 열화에 의해 발화의 원인이 되므로 상시 점검하고 주의를 기울여야 한다.

  • PDF