DOI QR코드

DOI QR Code

고온 시의 구조내력 평가를 위한 SM 400강재의 고온 특성 평가 연구

A Study on the Properties of SM 400 for Evaluation of Structural Stability at High Temperature

  • Kwon, In-Kyu (Department of Fire Protection Engineering, Kangwon National University)
  • 투고 : 2013.05.10
  • 심사 : 2013.08.09
  • 발행 : 2013.08.31

초록

건축물에서의 화재 발생은 인명피해, 구조물 피해 등 재해적 요소를 많이 포함하고 있으며, 가연물의 증가에 따라 화재 발생빈도수와 피해 규모는 점차 증대하는 추세이다. 특히 강재로 구성되는 기둥부재와 보부재의 고온 시 내력의 급격한 감소는 구조물의 붕괴와 같은 매우 위험한 상황에 도달될 수 있으므로 화재 시 강구조 건축물의 구조 안전성 확보를 위해서는 적용 강재의 신뢰성 있는 고온 물성자료가 매우 중요하다. 따라서 본 연구에서는 강구조 건축물에서 많이 활용되는 용접구조용 강재인 SM 400강재를 대상으로 고온 시 항복강도, 탄성계수를 측정하여 내력평가에 활용할 수 있는 실험식을 제시하고, 화재 시의 온도평가와 응력 계산에 요구되는 열전도율과 열팽창계수 등의 열적 특성의 자료를 제시한다. 또한 일반 구조용 강재인 SS 400과의 고온 특성을 비교, 평가함으로써 고온에서의 내력 특성을 확인한다.

Recently, the risk of fire outbreak is going up because of newly developed combustible materials are intended to apply more. Especially the steel framed structure can lose its load-bearing capacity when it is exposed to higher temperature condition such as a fire. So the pre-evaluation of fire resistance of the structure is very essential that the mechanical properties of yield strength and elastic modulus and thermal properties such as conductivity and linear expansion be required. To get the databases for SM 400 or welding structural steels at high temperature, various temperature conditions were used for deriving the yield strength, elastic modulus, linear expansion, and conductivity and the results were compared to those of SS 400, ordinary structural steel, respectively.

키워드

참고문헌

  1. CEN, "Eurocode 3: Design of Steel Structures, Part 1, 2: General Rules Structural Fire Design", CEN, Brussel (1995).
  2. BSI, "BS 5950:Part8: Structural Use of Steel Work in Building", U.K. (1990).
  3. SNZ, "NZS 3404: Part 1: Steel Structures Standard", Wellington (1997).
  4. L. Twilt, "Strength and Deformation Properties of Steel at Elevated Temperature; Some Practical Implications", Fire Safety Journal, Vol. 13, No. 1, pp. 9-15 (1988). https://doi.org/10.1016/0379-7112(88)90028-8
  5. G. M. E. Cooke, "An Introduction to the Mechanical Properties of Structural Steel at Elevated Temperatures", Fire Safety Journal, Vol. 13, No. 1, pp. 45-54 (1988). https://doi.org/10.1016/0379-7112(88)90032-X
  6. J. Outinen and P. Makelainen, "Mechanical Properties of Structural Steel at Elevated Temperatures and after Cooling Down", Fire and Materials, Vol. 28, No. 2-4, pp. 237-251 (2004) https://doi.org/10.1002/fam.849
  7. J. Chen and B. Young, "Experimental Investigation of Cold-formed Steel Materials at Elevated Temperatures", Thin-Walled Structures, Vol. 45, No. 1, pp. 96-110 (2007). https://doi.org/10.1016/j.tws.2006.11.003
  8. J. Brnic, M. Canadija, G. Turkalj and D. Lanc, "Structural Steel ASTM A709-Behavior at Uniaxial Tests Conducted at Lowered and Elevated Temperatures, Shorttime Creep Response, and Fracture Tough Calculation", Journal of Engineering Mechanics, ASCE, Vol. 136, No. 9, pp. 1083-1089 (2010) https://doi.org/10.1061/(ASCE)EM.1943-7889.0000152
  9. J. E. Daw, J. L. Rempe and D. L. Knudson, "Thermal Properties of Structural Materials Used in LWR Vessels", Journal of Nuclear Materials, Vol. 401, No. 1, pp. 65-70 (2010). https://doi.org/10.1016/j.jnucmat.2010.03.022
  10. L. Gardner and K. T. Ng, "Temperature Development in Structural Stainless Steel Sections Exposed to Fire", Fire Safety Journal, Vol. 41, No. 3, pp. 185-203 (2006). https://doi.org/10.1016/j.firesaf.2005.11.009
  11. I. K. Kwon, "Derivation of the Mechanical Properties of Structural Steels at High Temperatures", Journal of Korean Institute of Fire Science and Engineering, Vol. 21, No. 3, pp. 47-55 (2007).

피인용 문헌

  1. An Analytic Study on Structural Stability according to Boundary Conditions and H-section Column Lengths Made of An Ordinary Grade Structural Steels (SS 400) at High Temperatures vol.28, pp.1, 2014, https://doi.org/10.7731/KIFSE.2014.28.1.020
  2. Evaluation of Structural Stability at High Temperatures for Beams Made of High Strength Structural Steels (SM 570) by Analytical Method vol.28, pp.3, 2014, https://doi.org/10.7731/KIFSE.2014.28.3.049
  3. Finite Element Analysis of H-Shaped Compressive Member Exposed High Temperatures vol.30, pp.5, 2016, https://doi.org/10.7731/KIFSE.2016.30.5.054
  4. Analytic Study of Structural Stability for H-Section Column Made of Submarine Structural Steels Based on Boundary Conditions and Column Lengths at High Temperature vol.898, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.898.367
  5. A Comparative Study on the Fire Resistance of Ordinary Grade Structural Steels vol.904, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.904.228
  6. Differences of Fire Resistance According to Boundary Conditions of Submarine Structural Steels vol.905, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.905.137
  7. Comparison Study of Structural Stabilities for H-Section Columns Built with Ordinary Grade Strength Structural Steels According to Boundary Conditions and Lengths at High Temperature vol.937, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.937.424
  8. Analytic evaluation of fire performance according to boundary conditions and lengths for steel columns built with SM 520 and SM 570 at high temperatures vol.19, pp.sup8, 2015, https://doi.org/10.1179/1432891715Z.0000000001729