• Title/Summary/Keyword: 지구통계학적 기법

Search Result 95, Processing Time 0.026 seconds

Geostatistical Integration of Multi-Geophysical Data Measured at Different Ranges (측정 범위가 다른 다중 물리 탐사 자료의 지구통계학적 복합 해석)

  • Oh, Seok-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.309-315
    • /
    • 2009
  • Integrated interpretation of multi-geophysical data has been continuously used in terms that it has provided more confident information than the result from single-geophysical data. Especially, geostatistical integration has its own superiority that it is possible to deal with spatial characteristics as well as physical properties of survey data and the process of integration is clear. This paper further extends the previous work of geostatistical inversion for integrated interpretation. In this paper, we propose a new way of dealing with the case that the multi-geophysical data do not share the measurement range. According to the geostatistical kriging, the closer between the measurement points, the smaller kriging variance we get, and vice versa. We used this spatial properties as a weighting value to the process of geostatistical inversion for the geophysical data integration. An objective way to integrate different kinds of geophysical data measured at different ranges is provided with this algorithm.

Downscaling of Geophysical Data for Enhanced Resolution by Geostatistical Approach (물리탐사 자료의 해상도 향상을 위한 지구통계학적 다운스케일링)

  • Oh, Seok-Hoon;Han, Seong-Mi
    • Journal of the Korean earth science society
    • /
    • v.31 no.7
    • /
    • pp.681-690
    • /
    • 2010
  • Inversion result of geophysical data given as a block type was geostatistically simulated with borehole observation given as a point type and was applied to the rock classifying map. The geophysical data generally involved secondary information for the target material and were obtained for overall region. In contrast, borehole data provided direct information for the target material, but tended to be effective only for a narrow range of region and were dealt as a point type. Integrated simulation or kriging interpolation of these two different kinds of information required the covariance for point-point, point-block and block-block. Using the Bssim module included in SGeMS software, integrated result of geophysical data and borehole data were obtained. The results were then compared with the method of geostatistical inversion proposed by authors. Downscaling method used in this study showed relatively more flexible than the geostatistical inversion.

Geostatistical Integration of Ground Survey Data and Secondary Data for Geological Thematic Mapping (지질 주제도 작성을 위한 지표 조사 자료와 부가 자료의 지구통계학적 통합)

  • Park, No-Wook;Jang, Dong-Ho;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.581-593
    • /
    • 2006
  • Various geological thematic maps have been generated by interpolating sparsely sampled ground survey data and geostatistical kriging that can consider spatial correlation between neighboring data has widely been used. This paper applies multi-variate geostatistical algorithms to integrate secondary information with sparsely sampled ground survey data for geological thematic mapping. Simple kriging with local means and kriging with an external drift are applied among several multi-variate geostatistical algorithms. Two case studies for spatial mapping of groundwater level and grain size have been carried out to illustrate the effectiveness of multi-variate geostatistical algorithms. A digital elevation model and IKONOS remote sensing imagery were used as secondary information in two case studies. Two multi-variate geostatistical algorithms, which can account for both spatial correlation of neighboring data and secondary data, showed smaller prediction errors and more local variations than those of ordinary kriging and linear regression. The benefit of applying the multi-variate geostatistical algorithms, however, depends on sampling density, magnitudes of correlation between primary and secondary data, and spatial correlation of primary data. As a result, the experiment for spatial mapping of grain size in which the effects of those factors were dominant showed that the effect of using the secondary data was relatively small than the experiment for spatial mapping of groundwater level.

Geostatistical Approach to Integrated Modeling of Iron Mine for Evaluation of Ore Body (철광산의 광체 평가를 위한 지구통계학적 복합 모델링)

  • Ahn, Taegyu;Oh, Seokhoon;Kim, Kiyeon;Suh, Baeksoo
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.177-189
    • /
    • 2012
  • Evaluation of three-dimensional ore body modeling has been performed by applying the geostatistical integration technique to multiple geophysical (electrical resistivity, MT) and geological (borehole data, physical properties of core) information. It was available to analyze the resistivity range in borehole and other area through multiple geophysical data. A correlation between resistivity and density from physical properties test of core was also analyzed. In the case study results, the resistivity value of ore body is decreased contrast to increase of the density, which seems to be related to a reason that the ore body (magnetite) includes heavy conductive component (Fe) in itself. Based on the lab test of physical properties in iron mine region, various geophysical, geological and borehole data were used to provide ore body modeling, that is electrical resistivity, MT, physical properties data, borehole data and grade data obtained from borehole data. Of the various geostatistical techniques for the integrated data analysis, in this study, the SGS (sequential Gaussian simulation) method was applied to describe the varying non-homogeneity depending on region through the realization that maintains the mean and variance. With the geostatistical simulation results of geophysical, geological and grade data, the location of residual ore body and ore body which is previously reported was confirmed. In addition, another highly probable region of iron ore bodies was estimated deeper depth in study area through integrated modeling.

Use of Multivariate Statistical Approaches for Decoding Chemical Evolution of Groundwater near Underground Storage Caverns (다변량통계기법을 이용한 지하저장시설 주변의 지하수질 변동에 관한 연구)

  • Lee, Jeonghoon
    • Journal of the Korean earth science society
    • /
    • v.35 no.4
    • /
    • pp.225-236
    • /
    • 2014
  • Multivariate statistical analyses have been extensively applied to hydrochemical measurements to analyze and interpret the data. This study examines anthropogenic factors obtained from applications of correspondence analysis (CA) and principal component analysis (PCA) to a hydrogeochemical data set. The goal was to synthesize the hydrogeochemical information using these multivariate statistical techniques by incorporating hydrogeochemical speciation results calculated by the program, commonly used, WATEQ4F included in the NETPATH. The selected case study was LPG underground storage caverns, which is located in the southeastern Korea. The highly alkaline groundwaters at this study area are an analogue for the repository system. High pH, speciation of Al and possible precipitation of calcite characterize these groundwaters. Available groundwater quality monitoring data were used to confirm these statistical models. The present study focused on understanding the hydrogeochemical attributes and establishing the changes of phase when two anthropogenic effects (i.e., disinfection activity and cement pore water) in the study area have been introduced. Comparisons made between two statistical results presented and the findings of previous investigations highlight the descriptive capabilities of PCA using calculated saturation index and CA as exploratory tools in hydrogeochemical research.

Application of Geo-Statistic and Data-Mining for Determining Sampling Number and Interval for Monitoring Microbial Diversity in Tidal Mudflat (갯벌 미생물 다양성 모니터링 시료 채취 개수 및 간격 선정을 위한 지구통계학적 기법과 데이터 마이닝 적용 연구)

  • Yang, Ji-Hoon;Lee, Jae-Jin;Yoo, Keun-Je;Park, Joon-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1102-1110
    • /
    • 2010
  • Tidal mudflat is a reservoir for diverse microbial resources. Microbial diversity in tidal mudflat sediment can be easily influenced by various human activities. It is necessary to take representative samples to monitor microbial diversity in tidal mudflat sediments. In this study, we analyzed the microbial diversity and chemical characteristics of vegetation and non-vegetation tidal mudflat regions in the Kangwha tidal mudflat using geo-statistics and data-mining. According to the geo-statistical analysis, most correlation range values for the vegetation region were smaller than those for the non-vegetation region, which suggested that the shorter number and interval of sampling are required for the vegetation tidal mudflat environment due to its higher degree of chemical and biological complexity and heterogeneity. The data-mining analysis suggested that the organic content and nitrate were the major environmental factors influencing microbial diversity in the vegetation region while pH and sulfate were the major influencing factors in the non-vegetation region. Using the geo-statistical and data-mining integration approach, we proposed a guideline for determining the sampling interval and number to monitor microbial diversity in tidal mudflat.

An estimation technique of rock mass classes in undrilled region (미시추구간의 암반등급 산정 기법에 관한 연구)

  • 유광호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06b
    • /
    • pp.141-152
    • /
    • 2003
  • 터널 설계를 위한 조사 있어서, 요사이 시추공 조사는 물론 탄성파 탐사, 전기 비저항 탐사 등의 물리탐사가 빈번히 행해지고 있는 실정이다. 따라서 최적의 지반평가(암반 등급 등)를 위해 조사에서 얻어지는 모든 자료를 체계적으로 최대한 활용할 수 있는 방법이 절실히 요구되고 있다. 많은 연구자들이 정량적 데이터가 부족한 경우에 대처하기 위해 정상적 데이터의 이용을 적극 제안해 왔다. 본 연구에서는 신뢰도가 다른 두 종류의 자료, 즉 시추공자료와 물리탐사 자료를 활용하여 시추가 되지 않은 구간의 암반등급을 추정하는 방법을 지구통계학적 이론에 근거하여 소개하고자 한다.

  • PDF

Estimations of Spatial Variability of Cone Resistance Using Geostatistical Method (지구통계학적 기법을 이용한 콘저항치의 공간적 변화의 평가)

  • ;Michael, W. O'Neill
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.19-34
    • /
    • 1997
  • Applications of geostatistical method to cone penetrometer data have been performed at the overconsolidated clay site. Randomlylocated 28 electronic CPT soundings (Location A) and consistently-located 38 CPT soundings(Location B) are investigated geostatistically. Variograms for Locations A and B have been developed for q, from the CPT data by using "kriging" principles, which establish the horizontal and vertical correlation distrances at this site. These vertical and horizontal correlation distances can be used to optimal sampling design, where, if one needs to compare two test results, sampling must be made within these vertical and horizontal correlation distances. Analysis of the variograms indicated that the geological formation between two locations are not very different in both vertical direction and horizontal direction.direction.

  • PDF

Comparative Research of Kriging Method Using Raingauges Data and Radar Data (지상강우자료와 레이더자료를 이용한 크리깅 기법의 비교연구)

  • Jang, Hong Suk;Kang, Narae;Noh, Huiseong;Kim, Gwangseob;Kim, Hung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.188-188
    • /
    • 2015
  • 최근 기후변화와 지구온난화로 인한 돌발성 집중호우 및 홍수, 태풍의 빈도 증가는 사회 경제적으로 막대한 피해를 입히고 있다. 수자원 분야에서는 이러한 피해를 예방하고 빠른 대처를 위해 강우의 정밀한 관측뿐만 아니라 강우의 정확한 공간 분포 파악이 요구되고 있다. 그러나 일반적으로 강우의 측정 시 사용되는 지상우량계의 경우 공간적인 밀도가 낮고, 불규칙적으로 위치하고 있어 강우의 시 공간적 변화를 반영하기 어려운 한계가 있다. 이러한 문제를 보완하고자 지상강우자료와 레이더자료를 결합하여 사용하고 있다. 본 연구는 지상강우자료의 양적인 특성을 고려함과 동시에 레이더자료의 공간분포특성을 반영하는 강우장을 추정하고자 하였다. 따라서 지구통계학적 공간보간기법인 크리깅 기법을 적용하였으며, OK(Ordinary Kriging), KED(Kriging with External Drift), ColCOK(Collocated Cokriging) 기법에 의해 생성된 강우장을 비교하였다. 지상강우와의 양적인 측면을 비교하기 위해 관측소 위치에서의 실제 강우값과 추정된 강우값의 상관관계를 비교하였으며, 레이더자료의 공간분포특성과의 유사성을 확인하기 위해 각 기법에서의 베리오그램을 비교하였다.

  • PDF

Application of Geostatistical Methods to Groundwater Flow Analysis in a Heterogeneous Anisotropic Aquifer (불균질.이방성 대수층의 지하수 유동분석에 지구통계기법의 응용)

  • 정상용;유인걸;윤명재;권해우;허선희
    • The Journal of Engineering Geology
    • /
    • v.9 no.2
    • /
    • pp.147-159
    • /
    • 1999
  • Geostatistical methods were used for the groundwater flow analysis in a heterogeneous anisotropic aquifer. This study area is located at Sonbul-myeon in Hampyong-gun of Cheonnam Province which is a hydrogeological project area of KORES(Korea Resources Cooperation). Linear regression analysis shows that the topographic elevation and groundwater level of this area have very high correlation. Groundwater-level contour maps produced by ordinary kriging and cokringing have large differences in mountain areas, but small differences in hill and plain areas near the West Sea. Comparing two maps on the basis of an elevation contour map, a groundwater-level contour map using cokriging is more accurate. Analyzing the groundwater flow on two groundwater-level contour maps, the groundwater of study area flows from the high mountain areas to the plain areas near the West Sea. To verify the enffectiveness of geostatistical methods for the groundwater flow analysis in a heterogeneous anisotropic aquifer, the flow directions of groundwater were measured at two groundwater boreholes by a groundwater flowmeter system(model 200 $GeoFlo^{R}$). The measured flow directions of groundwater almost accord with those estimated on two groundwater-level contour maps produced by geostatistical methods.

  • PDF