• Title/Summary/Keyword: 지구계

Search Result 1,136, Processing Time 0.041 seconds

Vertical Distribution of Vascular Plant Species along an Elevational Gradients in the Gyebangsan Area of Odaesan National Park (오대산국립공원 계방산지구 관속식물의 고도별 수직분포)

  • An, Ji-Hong;Park, Hwan-Jun;Nam, Gi-Heum;Lee, Byoung-Yoon;Park, Chan-Ho;Kim, Jung-Hyun
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.381-402
    • /
    • 2017
  • In order to investigate distribution of vascular plants along elevational gradient in the Nodong valley of Gyebangsan, vascular plants of eight sections with 100-meter-high were surveyed from the Auto-camping site (800 m) to the top of a mountain (1,577 m). There were a total of 382 taxa: 89 families, 234 genera, 339 species, 7 subspecies, 34 varieties, and 2 forms. As a result of analyzing the pattern of species richness, it showed a reversed hump-shaped with minimum richness at mid-high elevation. As a result of analyzing habitat affinity types, the proportion of forest species increased with increasing elevation. But, the ruderal species decreased with increasing elevation, and then increased at the top of a mountain. As for the proportion of life forms, the annual herbs gradually decreased with increasing elevation, but it did not appear between 1,300 m and 1,500 m and then increased at the top of a mountain. The trees gradually increased with elevation and decreased from 1,300~1,400 m. The vascular plants divided into four groups by using DCA. The arrangement of each stands was arranged in order from right to left on the I axis according to the elevation. The distribution of vascular plants is determined by their own optimal ranges of vegetation. Also, rise in temperature due to climate change affects the distribution of vascular plants, composition, and diversity. Therefore, continuous monitoring is necessary to confirm ecological and environmental characteristics of vegetation, distribution ranges, changes of habitat. Furthermore, plans for conservation and management based on these data should be prepared according to climate change.

Effects of Barley Straw Management Practices on Greenhouse Gases(GHGs) Emission During Rice Cultivation in Rice-barley Double Cropping System (벼보리 이모작 재배에서 보리짚 처리 방법이 벼재배시 온실가스 배출에 미치는 영향)

  • Ko, Jee-Yeon;Lee, Jae-Saeng;Jung, Ki-yul;Choi, Young-Dae;Ramos, Edwin P;Yun, Eul-Soo;Kang, Hwang-Won;Park, Seong-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.1
    • /
    • pp.65-73
    • /
    • 2008
  • Because main barley straw management is changing these days from off-fields to burning that may relate to air quality concerning the global warming, this study was conducted to investigate the effects of barley-straw management practices on greenhouse gas emissions during rice cultivation in rice-barley double cropping system. The treatments were barley straw burning, off-field usage of barley straw and incorporation of barley straw in paddy fields. Laboratory experiment showed that burning of barley straw at the rate of $4.5Mg\;ha^{-1}$ emitted GHGs in the amounts of 4,607, 19.5, and $0.9kg\;ha^{-1}$ of $CO_2$, $CH_4$, and $N_2O$, respectively. During the rice cultivation of the rice-barley double cropping system, the highest GHG emission by evaluated close-static chamber method was observed from the soil incorporation of barley straw with 387 and $1.0kg\;ha^{-1}$ of $CH_4$ and $N_2O$, respectively. The GHGs emissions from the barley straw burning and off-field usage treatments were 233 and $160kg\;ha^{-1}$ for $CH_4$ and 0.80 and $0.79kg\;ha^{-1}$ for $N_2O$, respectively. The barley straw burning treatment showed the greatest GHGs emission among barley straw management practices in rice-barley double cropping system when considering GHGs emissions both during burning and from paddy fields during the cropping seasons. As a result, the GHGs emissions recorded in the barley straw incorporation to soil and off-field usage treatments were 22.4 and 66.8%, respectively, less than sum of GHGs emissions from the burning of barley straw and from paddy fields during rice cultivation.

Paleozoic Strata in the Lankawi Geopark, Malaysia: Correlation with Paleozoic Strata in the Korean Peninsula (말레이시아 랑카위 지질공원의 고생대 퇴적층: 한반도 고생대 퇴적층과의 대비)

  • Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.417-427
    • /
    • 2010
  • The Lankawi archipelago is located in 30 km western offshore near the Thailand-Malaysia border in west coast of the Malay Peninsula and consists of 99 (+5) tropical islands, covering an area of about $479km^2$. Together with biodiversity in flora and fauna, the Lankawi archipelago displays also geodiversity that includes rock diversity, landform diversity, and fossil diversity. These biodiversity and geodiversity have led to the Lankawi islands as a newly emerging hub for ecotourism in Southeast Asia. As a result, the Lankawi islands have been designated the first Global Geopark in Southeast Asia by UNESCO since July 1st, 2007. The geodiversity of Lankawi Geopark today is a result of a very long depositional history under the various sedimentological regimes and paleoenvironments during the Paleozoic, followed by tectonic and magmatic activities until the early Mesozoic, and finally by surface processes that etched to the present beautiful landscape. Paleozoic strata exposed in the Lankawi Geopark are subdivided into four formations that include the Machinchang (Cambrian), Setul (Ordovician to Early Devonian), Singa (Late Devonian to Carboniferous), and Chuping (Permian) formations in ascending order. These strata are younging to the east, but they are truncated by the Kisap Thrust in the eastern part of the islands. Top-to-the-westward transportation of the Kisap Thrust has brought the older Setul Formation (and possibly Machinchang Formation) from the east to overlay the younger Chuping and Singa formations in the central axis of the Lankawi islands. Triassic Gunung Raya Granite intruded into these sedimentary strata, and turned them partially into various types of contact metamorphic rocks that locally contain tin mineral deposits. Since Triassic, not much geologic records are known for the Lankawi islands. Tropical weathering upon rocks of the Lankawi islands might have taken place since the Early Jurassic and continues until the present. This weathering process played a very important role in producing beautiful landscapes of the Lankawi islands today.

Carbon Budget in Campus of the National Institute of Ecology (국립생태원 캠퍼스 내 주요 식생의 탄소수지)

  • Kim, Gyung Soon;Lim, Yun Kyung;An, Ji Hong;Lee, Jae Seok;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.167-175
    • /
    • 2014
  • This study was conducted to quantify a carbon budget of major vegetation types established in the campus of the National Institute of Ecology (NIE). Carbon budget was measured for Pinus thunbergii and Castanea crenata stands as the existing vegetation. Net Primary Productivity (NPP) was determined by applying allometric method and soil respiration was measured by EGM-4. Heterotrophic respiration was calculated as 55% of total respiration based on the existing results. Net Ecosystem Production (NEP) was determined by the difference between NPP and heterotrophic respiration (HR). NPPs of P. thunbergii and C. crenata stands were shown in $4.9ton\;C\;ha^{-1}yr^{-1}$ and $5.3ton\;C\;ha^{-1}yr^{-1}$, respectively. Heterotrophic respirations of P. thunbergii and C. crenata stands were shown in $2.4ton\;C\;ha^{-1}yr^{-1}$ and $3.5ton\;C\;ha^{-1}yr^{-1}$, respectively. NEPs of P. thunbergii and C. crenata stands were shown in $2.5ton\;C\;ha^{-1}yr^{-1}$ and $1.8ton\;C\;ha^{-1}yr^{-1}$, respectively. Carbon absorption capacity for the whole set of vegetation types established in the NIE was estimated by applying NEP indices obtained from current study and extrapolating NEP indices from existing studies. The value was shown in $147.6ton\;C\;ha^{-1}yr^{-1}$ and it was calculated as $541.2ton\;CO_2ha^{-1}yr^{-1}$ converted into $CO_2$. This function corresponds to 62% of carbon emission from energy that NIE uses for operation of various facilities including the glass domes known in Ecorium. This carbon offset capacity corresponds to about five times of them of the whole national territory of Korea and the representative rural area, Seocheongun. Considered the fact that ongoing climate change was originated from imbalance of carbon budget at the global level, it is expected that evaluation on carbon budget in the spatial dimension reflected land use pattern could provide us baseline information being required to solve fundamentally climate change problem.

Alteration Zoning, Mineral Assemblage and Geochemistry of the Hydrothermal Clay Deposits Related to Cretaceous Felsic Magmatism in the Haenam Area, Southwest Korea (한국 서남부, 해남지역에서 백악기 산성마그마티즘에 관련된 열수점토광상의 누대분배, 광물조합의 지구화학적 연구)

  • Kim, In Joon
    • Economic and Environmental Geology
    • /
    • v.25 no.4
    • /
    • pp.397-416
    • /
    • 1992
  • In the present study, three clay deposits, named the Seongsan, Ogmaesan and Haenam deposits, were investigated. The altered zones are recognized in the hydrothermally altered rocks of the clay deposits from the center of the alteration to the margin: Kaolin, Kaolin-Quartz, Quartz, Sericite and Chlorite zones in the Seongsan deposits; Quartz zone, Alunite zone, Kaolin zone, Sericite zone and Chlorite zone in the Ogmaesan deposits; Quartz zone, Pyrophyllite zone, Sericite zone and Chlorite zone in the Haenam deposits. These zones can be grouped into two types of alteration: Acidic alteration such as Pyrophyllite zone, Alunite zone, Quartz zone, Kaolin zone, Kaolin-Quartz zone and a part of Sericite zone; Propylitic alteration such as Chlorite zone and a part of Sericite zone. All clay deposits belong to high-sulfidation (acid-sulfate) system. The rocks of the acidic alterations are composed of pyrophyllite, alunite, kaolin minerals, sericite, quartz and pyrite. On the basis of bulk chemical compositions, it was found that some components such as $SiO_2$, $TiO_2$, $Fe_2O_3$, FeO, MgO, CaO, $K_2O$ and $Na_2O$ were mobilized considerably from the original rocks. The mobility of these major elements is related to, and controls, mineral assemblages in each altered zone. Polytypes of sericite are determined as $2M_1$ and 1M by X-ray diffraction method. The amount of $2M_1$ is nearly equal to that of 1M in the Seongsan deposits whereas $2M_1$ is less and higher than that of 1M in the Ogmaesan and the Haenam deposits. These facts indicate that formation temperature of sericite is relatively high in the Haenam deposits, moderate in the Seongsan deposits, and low in the Ogmaesan deposits. The ratios of Na/(K+Na) for alunite in the Ogmaesan deposits determined by electron microprobe analyzer (EPMA) are higher than those in the Seongsan deposits. Thus, the alunite of the Ogmaesan deposits must have been formed from the solutions with relatively high aqueous Na/(K+Na) ratios and low pH at a high temperature rather than that of the Seongsan deposits. From all data, it is clarified that alunite is hypogene in origin, and has been formed by oxidation of hydrogen sulfide in the steam-heated environment, and that alunite has been produced by the spectacular solfataric alteration observed at the surface of some present-day hydrothermal systems.

  • PDF

Monitoring of a Time-series of Land Subsidence in Mexico City Using Space-based Synthetic Aperture Radar Observations (인공위성 영상레이더를 이용한 멕시코시티 시계열 지반침하 관측)

  • Ju, Jeongheon;Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1657-1667
    • /
    • 2021
  • Anthropogenic activities and natural processes have been causes of land subsidence which is sudden sinking or gradual settlement of the earth's solid surface. Mexico City, the capital of Mexico, is one of the most severe land subsidence areas which are resulted from excessive groundwater extraction. Because groundwater is the primary water resource occupies almost 70% of total water usage in the city. Traditional terrestrial observations like the Global Navigation Satellite System (GNSS) or leveling survey have been preferred to measure land subsidence accurately. Although the GNSS observations have highly accurate information of the surfaces' displacement with a very high temporal resolution, it has often been limited due to its sparse spatial resolution and highly time-consuming and high cost. However, space-based synthetic aperture radar (SAR) interferometry has been widely used as a powerful tool to monitor surfaces' displacement with high spatial resolution and high accuracy from mm to cm-scale, regardless of day-or-night and weather conditions. In this paper, advanced interferometric approaches have been applied to get a time-series of land subsidence of Mexico City using four-year-long twenty ALOS PALSAR L-band observations acquired from Feb-11, 2007 to Feb-22, 2011. We utilized persistent scatterer interferometry (PSI) and small baseline subset (SBAS) techniques to suppress atmospheric artifacts and topography errors. The results show that the maximum subsidence rates of the PSI and SBAS method were -29.5 cm/year and -27.0 cm/year, respectively. In addition, we discuss the different subsidence rates where the study area is discriminated into three districts according to distinctive geotechnical characteristics. The significant subsidence rate occurred in the lacustrine sediments with higher compressibility than harder bedrock.

Screening of cryoprotectants (CPAs) for cryopreservation in the Nitzschia sp. of marine microalgae (해양 규조류 Nitzschia sp.의 초저온동결보존을 위한 보존제의 영향 분석)

  • Lee, In Hye;Jeon, Ji Young;Kim, Kyeung Mi;Kang, Myung suk
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.400-408
    • /
    • 2018
  • Biodiversity has continued to degrade in the $21^{st}$ century due to global warming occasioned by destruction of the environment around the world.. The Nagoya protocol places Korea in a unique position to effectively develop and protect its domestic genetic resources. Microalgae under study in this research contains large amount of antioxidant substances such as beta carotene and astaxanthin, that can be used as biological resource owing to the large amounts of biomass that can be secured through photosynthesis. However, it is difficult to preserve it since cryopreservation method used for long-term preservation is yet to be developed. A basic study for long term cryopreservation was carried out on Nizschia frustulum and Nitzschia amabilis which belong to marine diatoms. As cryoprotectants (CPAs), glycerol, DMSO, and methanol which penetrate into cells were prepared at 5%, 10%, and 15% concentrations each, in case of methanol, it was tested at concentrations of 5%, 10% and 12% by its nature. Two kinds of microalgae, N. frustulum and N. amabilis, were diluted with $10^2$, $10^3$ and $10^4cells\;ml^{-1}$, respectively. The highest survival rate was shown at12% concentration of methanol, and the figures were $6.94{\pm}0.31%$ in N. frustulum and $8.85{\pm}0.16%$ in N. amabilis. As a result of 3 weeks cultivation of thawed microalgae after freezing, the result is shows that N. frustulum increased about 10 times faster and N. amabilis increased about 12 times the original concentration.

Greenhouse Gas Mitigation Effect Analysis by Cool Biz and Warm Biz (쿨맵시 및 온맵시 복장 착용에 의한 온실가스 감축 효과 분석)

  • Yeo, So-Young;Ryu, Ji-Yeon;Lee, Sue-Been;Kim, Dai-Gon;Hong, Yoo-Deog;Seong, Mi-Ae;Lee, Kyoung-Mi
    • Journal of Climate Change Research
    • /
    • v.2 no.2
    • /
    • pp.93-106
    • /
    • 2011
  • Republic of Korea officially announced its mid term reduction target which reduce about 30% of BAU GHG emission by 2020 in the 15th meeting of UNFCCC(COP 15) held in Copenhagen, Denmark 2009. To achieve this goal, it is necessary to understand the serious of climate change and take part in GHG reduction not only industry but also the nation. However, such positive participation in green life which may cause inconvenient of the life of the people. It should be accomplished with providing reliable information. This study suggests the scientific potentialities of GHG emission by guideline on low carbon life and green life to form and change a lifestyle suitable for coping with climate change. And also, this study quantitate the GHG reduction which may reduce demand for air conditioning by cool biz and warm biz. In Korea, this campaign has become known as 'CoolMaebsi' by Ministry of Environmental of Korea. 'CoolMaebsi' is a compound word of 'Cool' which means feel refreshed, and 'Maebsi' is a Korean word which means attire. Though this campaign is effective and significant to reduce the GHG emission yet there were no study on quantitative analysis. Therefore this study calculated reduced energy consumption and potential GHG emission by measuring variation of skin temperature. As the result, wearing warm biz and cool biz have an effect of reducing not only the energy consumption but also GHG emission. To achieve the low carbon society, it is necessary to improve the energy saving system and introduce the policy which guide to change a life style.

Sapflux Measurement Database Using Granier's Heat Dissipation Method and Heat Pulse Method (수액류 측정 데이터베이스: 그래니어(Granier) 센서 열손실탐침법(Heat Dissipation Method)과 열파동법(Heat Pulse Method)을 이용한 수액류 측정)

  • Lee, Minsu;Park, Juhan;Cho, Sungsik;Moon, Minkyu;Ryu, Daun;Lee, Hoontaek;Lee, Hojin;Kim, Sookyung;Kim, Taekyung;Byeon, Siyeon;Jeon, Jihyun;Bhusal, Narayan;Kim, Hyun Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.327-339
    • /
    • 2020
  • Transpiration is the movement of water into the atmosphere through leaf stomata of plant, and it accounts for more than half of evapotranspiration from the land surface. The measurements of transpiration could be conducted in various ways including eddy covariance and water balance method etc. However, the transpiration measurements of individual trees are necessary to quantify and compare the water use of each species and individual component within stands. For the measurement of the transpiration by individual tree, the thermometric methods such as heat dissipation and heat pulse methods are widely used. However, it is difficult and labor consuming to maintain the transpiration measurements of individual trees in a wide range area and especially for long-term experiment. Therefore, the sharing of sapflow data through database should be useful to promote the studies on transpiration and water balance for large spatial scale. In this paper, we present sap flow database, which have Granier type sap flux data from 18 Korean pine (Pinus koraiensis) since 2011 and 16 (Quercus aliena) since 2013 in Mt.Taehwa Seoul National University forest and 18 needle fir (Abies holophylla), seven (Quercus serrata), three (Carpinus laxiflora and C. cordata each since 2013 in Gwangneung. In addition, the database includes the sapling transpiration of nine species (Prunus sargentii, Larix kaempferii, Quercus accutisima, Pinus densiflora, Fraxinus rhynchophylla, Chamecypans obtuse, P. koraiensis, Betulla platyphylla, A. holophylla, Pinus thunbergii), which were measured using heat pulse method since 2018. We believe this is the first database to share the sapflux data in Rep. of Korea, and we wish our database to be used by other researchers and contribute a variety of researches in this field.

The Interrelationship between Riparian Vegetation and Hydraulic Characteristics during the 2020 Summer Extreme Flood in the Seomjin-gang River, South Korea (2020 여름 섬진강 대홍수시 하안식생과 수리 특성의 상호관계)

  • Lee, Cheolho;Lee, Keonhak;Kim, Hwirae;Baek, Donghae;Kim, Won;Kim, Daehyun;Lee, Hyunjae;Woo, Hyoseop;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.2
    • /
    • pp.79-87
    • /
    • 2021
  • Because active interactions occur among vegetation, hydrology, and geomorphology in riparian systems, any changes in one of these factors can significantly affect the other two. In this study, we evaluated these interactions at four sites (two in Gajeong and two in Hahan) along the Seomjin-gang River that was substantially devastated by an extreme flood in 2020. We examined the relationship between the riparian vegetation and the hydraulic characteristics of the flood using remote sensing, hydraulic modeling, and field surveys combined. The evaluation results showed that the floods caused a record-breaking rise of up to 43.1 m above sea level at the Yeseong-bridge stage gauge station (zero elevation 27.4 m) located between the Gajeong and Hahan sites, with the shear stress being four times higher in Hahan than in Gajeong. Additionally, the water level during the flood was estimated to be a maximum of 1 m higher depending on the location in the presence of riparian plants. Furthermore, both sites underwent extensive biological damage due to the flood, with 78-80% loss in vegetation, with preferential damage observed in large willow species, compared to Quercus acutissima. The above findings imply that all plant species exhibit different vulnerabilities towards extreme floods and do not induce similar behavior towards events causing a disturbance. In conclusion, we developed strategies for effectively managing riparian trees by minimizing flood hazards that could inevitably cause damage.