• Title/Summary/Keyword: 지각변동모델

Search Result 19, Processing Time 0.025 seconds

Development of Reference Epoch Adjustment Model for Correction of GPS Precise Point Positioning Results (GPS 정밀단독측위 성과의 보정을 위한 기준시점 조정모델 개발)

  • Sung, Woo-Jin;Yun, Hong-Sik;Hwang, Jin-Sang;Cho, Jae-Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.249-258
    • /
    • 2012
  • In this study, the epoch adjustment model was developed to correct GPS precise point positioning result to be suitable for the current geodetic datum of Korea which is tied at past epoch statically. The model is based on the formula describing crustal movements, and the formula is composed of several parameters. To determine the parameters, the data gathered at 14 permanent GPS stations for 10 years, from 2000 to 2011, were processed using GIPSY-OASIS II. It was possible to determine the position of permanent GPS stations with an error range of 16mm and the position of check points with an error range of 12mm by appling the model to GPS precise point positioning result. It is considered that more precise model could be calculated by using GPS data of more permanent GPS stations.

Analysis of Absolute Sea-level Changes around the Korean Peninsula by Correcting for Glacial Isostatic Adjustment (후빙기조륙운동 보정을 통한 한반도 주변 해역의 절대해수면 변화 분석)

  • Kim, Kyeong-Hui;Park, Kwan-Dong;Lim, Chae-Ho;Han, Dong-Hoon
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.719-731
    • /
    • 2011
  • Based on the ICE-3G and ICE-5G ice models, we predicted the velocities of crustal uplift caused by Glacial Isostatic Adjustment (GIA) at 39 tide gauge sites operated by Korea Hydrographic and Oceanographic Administration (KHOA). We also divided the Korean peninsula in the ranges of $32-38.5^{\circ}N$ and $124-132^{\circ}E$ in $0.5^{\circ}{\times}0.5^{\circ}$ grids, and computed the GIA velocities at each grid point. We found that the average uplift rates due to GIA in South Korea were 0.33 and 1.21 mm/yr for ICE-3G and ICE-5G, respectively. Because the GIA rates were relatively high at ~1 mm/yr when the updated ice model ICE-5G was used, we concluded that the GIA effect cannot be neglected when we compute the absolute sea level (ASL) rates around the Korean peninsula. In this study, we corrected the ICE-5G GIA velocities from the relative sea level rates provided by KHOA and we computed the ASL rates at 13 tide gauge stations. As a result, we found that the average ASL velocity around the Korean peninsula was 5.04 mm/yr. However, the ASL rates near Jeju island were abnormally higher than the other areas and the average was 8.84 mm/yr.

Monitoring the Crustal Movement Before and After the Earthquake By Precise Point Positioning - Focused on 2011 Tohoku Earthquake - (정밀절대측위에 의한 지진 전·후 동아시아 지역 지각변동 모니터링 - 도호쿠 대지진을 중심으로 -)

  • Kim, Min Gyu;Park, Joon Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.5
    • /
    • pp.477-484
    • /
    • 2012
  • Recently, as earthquake is more frequently taking place around the world due to diastrophism, the importance of diastrophism and disaster detection is becoming more important. In this study, to analyze the interpretation of seismic displacement by the Japanese earthquake in March, 2011, and monitor the diastrophism of plates in Japan and surrounding Eurasia, Pacific, and Philippines before and after the earthquake, the observational data from IGS observatories in Japan and Asian regions were processed by precise point positioning. The displacement was biggest in MIZU, which was the closest to the epicenter, and the earthquake-affected region was in inverse proportion to the distance from the epicenter. The result of calculating the diastrophism speed before and after the earthquake, based on precise point positioning of IGS observatories located in the 4 plates around Japan, showed that the displacement speed changed and different plates showed different results. The comparison with the plate fate model allowed to analyze the change in diastrophism by earthquake, and to understand the characteristics of the displacement of the plates around Japan. Later, a continuous diastrophism monitoring based on GPS is needed for earthquake prediction and diastrophism research, and the data gained by continuous GPS-based monitoring of diastrophism will be fully used as basic data for relevant research and earthquake disaster management.

Characteristic Analysis of Crustal Movement around Korean Peninsula By IGS Data (IGS 자료에 의한 한반도 주변의 지각변동 특성 해석)

  • Park, Joon-Kyu;Kang, Joon-Mook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.645-653
    • /
    • 2010
  • In this study, IGS(International GNSS Service) stations were processed by the method of PPP(Precise Point Positioning), and velocities of crustal movements about the region of the Korean Peninsula were calculated precisely. The characteristics of crustal movements around Korean Peninsula were understood by velocity calculation of crustal movements. We confirmed from the result which calculated by crustal movement velocity shows the movement Eurasia and North America plate move to south-east, and Philippine plate moves to north-west. This result is respected to be utilized as a basic data about analysis of earthquake and earth physics.

Crustal Deformation Velocities Estimated from GPS and Comparison of Plate Motion Models (GPS로 추정한 지각변동 속도 및 판 거동 모델과의 비교)

  • Song, Dong Seob;Yun, Hong Sic
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.877-884
    • /
    • 2006
  • GPS is an essential tool for applications that be required high positioning precision, for the velocity field estimation of tectonic plates. The three years data of eight GPS permanent station were analyzed to estimate crustal deformation velocities using Gipsy-oasis II software. The velocity vectors of GPS stations are estimated by linear regression method in daily solution time series. The velocities have a standard deviation of less than 0.1mm/yr and the magnitude of velocities given by the Korean GPS permanent stations were very small, ranging from 25.1 to 31.1 mm/yr. The comparison between the final solution and other sources, such as IGS velocity result calculated from SOPAC was accomplished and the results generally show good agreement for magnitude and direction in crustal motion. To evaluate the accuracy of our results, the velocities obtained from six plate motion model was compared with the final solution based on GPS observation.

Improvement of GPS Relative Positioning Accuracy by Using Crustal Deformation Model in the Korean Peninsula (GPS상대측위 정확도 향상을 위한 한반도 지각변동모델 개발)

  • Cho, Jae-Myoung;Yun, Hong-Sik;Lee, Mi-Ran
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.3
    • /
    • pp.237-247
    • /
    • 2011
  • As of 2011, 72 Permanent GPS Stations are installed to control DGPS reference points by the National Geographic Information Institute in South Korea. As the center of the Earth's mass continues to move, the coordinates of the permanent GPS stations become inconsistent over time. Thus, a reference frame using a set of coordinates and their velocities of a global network of stations at a specific period has been used to solve the inconsistency. However, the relative movement of the permanent GPS stations can lower the accuracy of GPS relative positioning. In this research, we first analyzed the data collected daily during the past 30 months at the 40 permanent GPS stations within South Korea and the 5 IGS permanent GPS stations around the Korean Peninsula using a global network adjustment. We then calculated the absolute and relative amount of movement of the GPS permanent stations. We also identified the optimum renewal period of the permanent GPS stations considering the accuracy of relative GPS surveying. Finally, we developed a Korean a Korean crustal movement model that can be used to improvement of accuracy.

On the isostasy and effective elastic thicness of the lithosphere in southern prt of the Korean Peninsula (한반도 남부 지각평형과 암석권의 유효탄성두께)

  • Choi, Kwang-Sun;Kim, Jeong-Hee;Shin, Young-Hong
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.4
    • /
    • pp.293-303
    • /
    • 2002
  • Applying elastic plate model, we estimated elastic thickness and rigidity of the lithosphere in southern part of the Korean Peninsula($332km{\times}332km$ area of which center is $36.5^{\circ}N$ in latitude and $127.5^{\circ}E$ in longitude) by analysing terrain data and gravity data measured up to 2002. We tried to exclude the East Sea in choosing the study area because it has different tectonic environment. The mean Moho depth was estimated to be 30 km by power spectrum analysis of gravity data in the study area, Assuming one layer crust and applying elastic plate model, the loads with wavelengths of greater than 300 km are locally compensated, loads with wavelengths in the range 80-300km are partially supported by the strength of the lithosphere, and loads with wavelengths of less than 80km are almost completely supported by lithospheric strength. Assuming crustal model and rigidity, we calculated predicted coherence and compared it with observed coherence. As a result, we wert able to estimate the effective elastic thickness to be of 15 km(corresponding flexural rigidity is $3.0{\times}10^{22}Nm$). This indicates that the crust of the study area is relatively weaker than other old and stable continental regions but is similar to continental margins or oceanic area. The low rigidity could be explained by many tectonic and thermal activities such as orogenic activities, magmatic intrusions, volcanic activities, foldings, faultings, etc.

  • PDF

Horizontal Strain of the Crust in Korea for the Past 80 Years from Geodetic Observations (측지측량 결과로부터 조사된 과거 80년간 한국에서 지각의 수평변형)

  • 최재화
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.49-61
    • /
    • 1997
  • 본 연구에서는 한국에서 구삼각강(1910-1915)과 정밀1차측지망(1975-1994)을 사용하여 지각변동량을 계산하고, 지체구조의 일반적인 변형패턴을 기하학적으로 조사하였다. 본 연구에서는 변형량을 계산하기 위하여 2차원의 무한소 변형모델을 설정하였으며, 수평변형량은 구좌표와 정밀1차측지망의 정밀동시강조정을 자유강조정법에 의하여 최초로 실시하여 일괄성있는 신좌표를 사용하여 계산된 측지선의 변화량으로 추정하였다. 변형설계결과로부터 1910년부터 1994년까지 누적된 변형량은 평균(1.07$\pm$0.5)$\times$10-5이고, 이로부터 년변형속도는 (0.13$\pm$0.063)$\mu$/yr 임을 알 수 있었으며, 변형의 경향을 보면 변형량이 10$\mu$ 보다 큰 값이 한반도의 동해안 지역에 분포하고 있으며, 서부쪽에는 10$\mu$이하의 값이 분포하고 있는 것으로 나타나 한반도의 동해안에서 지진의 발생빈도가 높은 것을 고려한다면 본 연구로부터 계산된 결과는 장래의 연구를 위해 중요한 데이터가 될 것이다. 본 연구에서 얻은 주변형축의 방향은 전국적으로 $77.6^{\circ}$$\pm$$13.5^{\circ}$방향임을 보여주고 있어 한반도의 지각은 ENE~WSW방향으로 압축상태에 있음을 알 수 있었으며, 이 결과는 지질학자나 지진학자들의 연구로부터 얻은 결과와 P-축의 방향이 일치하고 있고, 최대전단변형 이론과 일치하고 있는 것으로 나타났다.

  • PDF

Ocean Tide Loading Effect Prediction using GPS in Coastal Area of Korea Peninsula (GPS를 이용한 한반도 연안의 해양조석 부하영향의 추정)

  • 윤홍식;이동하;조재명;황학
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.33-40
    • /
    • 2004
  • 본 논문에서는 해양조석의 부하효과가 매우 큰 것으로 알려져 있는 우리나라의 서해안을 비롯하여 연안에 설치된 GPS 상시관측소(제주도, 호미곶, 주문진, 마라도, 팔미도, 울릉도, 영도) 데이터를 사용하여 각 관측소의 해양조석의 부하영향으로 인한 지각의 연직변동량을 계산하였다. 총 12개의 해양조석 부하성분의 결과와 실제 해양조석값을 이용한 회귀분석을 통해 실제 해양조석에 대한 한반도 연안의 해양조석 부하영향을 추정하였다. 그 후 이들을 일본과 우리나라 주변에 대하여 지역적으로 개량한 해양조석모델(NAO99jb)로부터 계산된 결과들과 비교ㆍ분석을 실시하여, 지역적인 해양조석 모델의 개발가능성을 검토하였다.

  • PDF

The Effect of Cooperative Learning on Middle School Girls' Science Preferences - Applying the STAD Model in the Unit of Crustal Deformation - (협동 학습이 중학교 여학생들의 과학 선호도에 미치는 효과 - 지각 변동 단원에 STAD 모델의 적용 -)

  • Cho, Kyu-Seong;Lee, Gwang-Ho;Yang, Su-Mi
    • Journal of the Korean earth science society
    • /
    • v.27 no.3
    • /
    • pp.279-288
    • /
    • 2006
  • We incorporated cooperative learning focusing on the 'Crustal Deformation' in five classes of second grade students, at an all-girls' middle school of Gimje city. The groups of cooperative learning were composed of four members of students each, according to the heterogeneous level. We conducted a pretest on the students' preference before incorporating the cooperative learning. After ten weeks of cooperative school work, the students took a post test with the same questions as the pretest. The result of this method greatly impacted the change on the students' scientific preference. It means that the students showed a positive change in their awareness of and participation in science classes, compared to before. However it is difficult to distinguish the differences in their scientific attitude on the recognition about scientists and habits which make them think scientifically. This resulted from the short period of ten weeks which is not sufficient to carry out the study strategy effectively. Surveys of the students on cooperative learning indicates that the middle level students prefer this method unlike the higher or lower level students. we are convinced that they can learn from the students of higher level and are able to help the lower level with the interaction through cooperative learning. According to the result of the survey, the method has some weaknesses; it arouses the high noise levels and consequent disturbance due to verbal interaction and of conflicts due to disagreements when they discuss the process. On the contrary, advantages are developing the students's interest in science class, helping them to learn, creating positive participation in class, and fostering mutual collaboration with other students through cooperative learning.