• Title/Summary/Keyword: 증분성

Search Result 189, Processing Time 0.02 seconds

Seismic Performance of Coupled Shear Wall Structural System with Relaxed Reinforcement Details (완화된 배근 상세를 갖는 병렬전단벽 구조시스템의 내진성능평가)

  • Song, Jeong-Weon;Chun, Young-Soo;Song, Jin-Kyu;Seo, Soo-Yeon;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.187-196
    • /
    • 2016
  • The current seismic design code prescribes that coupling beam should be reinforced using diagonally bundled bars. However, the use of a diagonally bundled bars has a negative effect on constructability and economic efficiency. In the present study, the seismic performance of 4 coupling beams with the different details of reinforcement was evaluated through a cyclic reversal loading test. The specimens were constructed to measure the results of the experimental variable regarding the details of shear reinforcement. Next, the seismic performance of the coupled shear wall system evaluated by methods proposed in the FEMA P695. The cyclic reversal loading test results of this study showed that the performance of coupling beams with relaxed reinforcement detail was almost similar to that of a coupling beam with the ACI detail and meet the level which requested from standard. The result of the seismic evaluation showed that all coupling beams are satisfied with the design code and seismic performance.

Verification of NASCOM : Nonlinear Finite Element Analysis for Structural Concrete (NASCOM에 의한 실험결과 예측)

  • 조순호
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.187-195
    • /
    • 1996
  • A finite element formulation based on the CFT(Compression Field Theory), considering the effect of compression softening in cracked concrete, and macro-scopic and rotating crack models etc., was presented for the nonlinear behaviour of structural concrete. Considering the computational efficency and the ability of modelling the post-ultimate behaviour as major concerns, the Incremental displacement solution algorithm involving initial material stiffnesses and the relaxation procedure for fast convergence was adopted and formulated in a type of 8-noded quadrilateral isoparametric elements. The analysis program NASCOM(Non1inear Analysis of Structural Concrete by FEM : Monotonic Loading) developed in this way enables the predictions of strength and deformation capacities in a full range, crack patterns and their corresponding widths, and yield extents of reinforcement. As the verification purpose of NASCOM, the predictions were made for Bhide's Panel(PB21) and Leonhardt's deep beam tests. The predicted results shows somewhat stiff behaviour for the panel test, and vice versa for deep beam tests. More refining process would be necessary hereafter in terms of more accurately simulating the effects of tension-stiffening and compression softening in concrete.

Finite Element Analysis of Reinforced Concrete Hollow Columns Using Path-dependent Volume Control Method (경로의존형 체적제어법을 이용한 철근콘크리트 중공 기둥의 유한요소해석)

  • Song, Ha-Won;Nam, Sang-Hyeok;Lim, Sang-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.341-350
    • /
    • 2007
  • The volume control method which utilize a pressure node added into a finite shell element can overcome the drawbacks of conventional load control method and displacement control method. In this study, an improved volume control method is introduced for effective analysis of path-dependent behaviors of RC columns subjected to lateral cyclic loading or reversed cyclic loading along with compressive loading. RC shell structures and RC hollow columns are analyzed by discretizing the structures with layered shell elements and by applying in-plane two dimensional constitutive equations for concrete layers and reinforcement layers of the shell elements. The so-called path dependent volume control method as a finite element analysis technique is verified by comparing analysis results with other data including experimental results. The validity and applicability of the modeling technique is also confirmed by the comparison.

A Nonlinear Constitutive Model for Progressive Fracturing of Concrete (콘크리트의 점진적(漸進的) 파괴(破壞)에 대한 비선형(非線型) 구성(構成)모델확립연구(硏究))

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.2
    • /
    • pp.55-64
    • /
    • 1984
  • Presented is a nonlinear constitutive model for progressive tensile fracturing of concrete. The model is incremental, path-dependent, and tensorialy invariant. The total strain tensor is assumed to be a sum of a purely elastic component and an inelastic component. The material is considered to contain weak planes of all directions which characterize the planes of the microcracks. A one-to-one functional dependence is assumed between the normal stress and the normal strain across each of the weak planes. The tangential stiffness of concrete is then derived form the principle of virtual work. The present theory can be applied to loading histories which are nonproportional or during which the principal directions rotate. Good agreement with the available direct tensile test data which cover strain-softening is demonstrated.

  • PDF

Determination of the Optimal Contract Amount of the Hydropower Energy Considering the Reliabilities of Reservoir Inflows (저수지(貯水池) 유입량(流入量)의 신뢰도(信賴度)를 고려한 최적(最適) 계약전력량(契約電力量)의 결정(決定))

  • Kwon, Oh Hun;Yoo, Ju Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.141-149
    • /
    • 1993
  • Production of hydro-energy is random in its output amount due to the characteristics of the reservoir inflows. Therefore, it is necessary to provide the rationality in determining the amount of energy for a supply contract. This study presents a methodology for determining reasonably reliable amount of the energy supply considering the energy sale-incomes associated with the penalties which are subject to inflow-reliabilities. The objective function consists of the returns of energy sales and the risk-loss function to reflect statistically relevant risks. A range of the coefficient of the risk-loss function was figured out by its sensitivity analysis. The risk-loss herein means the penalty which should be paid by the energy supplier in case that the level of the energy supply is behind the contracted amount. And the reliability of reservoir inflow is defined by the exceedance probability of the inflow. The log-normal distribution was accepted as the probability density function of monthly inflows on the level of significance at 5%. Golden-ratio searching was applied to identify the optimal reliability and Incremental Dynamic Programming was used to maximize generation of the hydro-power energy in reservoir operation. The algorithm was the applied to the Daechung multi-purpose reservoir and hydro-power plant system in order to verify its usefulness.

  • PDF

Analysis of Dynamic Earth Pressure Based on Zero Extension Line Theory (영팽창선이론(零膨脹線理論)에 의한 동적토압해석(動的土壓解析))

  • Shin, Dong Hoon;Hwang, Jung Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.235-244
    • /
    • 1993
  • The present study was made based on the zero extension line theory and the well-known Mononobe-Okabe's to determine the dynamic earth pressures acting on the retaining walls. The zero extension line theory, which was proposed by Roscoe et al., assumes the coincidence between the loci of failure and the zero extension lines in soil mass. ln order to compute the dynamic earth pressure developed by an earthquake, it was assumed that for the vertical retaining walls with no surcharge, the backfill materials are dense and cohesionless sandy soils, there are no changes in soil parameters during earthquake, and the horizontal earthquake intensity is considered. The effects of horizontal earthquake intensity, internal friction angle of soil, wall friction angle and dilation angle, on the earth pressure coefficients were analysed. Final1y, the presented theories were successfully compared with the Mononobe-Okabe's as well.

  • PDF

Material Nonlinear Analysis of the RC Shells Considering Tension Stiffening Effects (인장강성 효과를 고려한 RC 쉘의 재료비선형 해석)

  • Jin, Chi Sub;Eom, Jang Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.99-107
    • /
    • 1993
  • In this study, material nonlinear finite element program is developed to analyze reinforced concrete shell of arbitrary geometry considering tension stiffening effects. This study is capable of tracing the load-deformation response and crack propagation, as well as determining the internal concrete and steel stresses through the elastic, inelastic and ultimate ranges in one continuous computer analysis. The cracked shear retention factor is introduced to estimate the effective shear modulus including aggregate interlock and dowel action. The concrete is assumed to be brittle in tension and elasto-plastic in compression. The Drucker-Prager yield criterion and the associated flow rule are adopted to govern the plastic behavior of the concrete. The reinforcing bars are considered as a steel layer of equivalent thickness. A layered isoparametric flat finite element considering the coupling effect between the in-plane and the bending action was developed. Mindlin plate theory taking account of transverse shear deformation was used. An incremental tangential stiffness method is used to obtain a numerical solution. Numerical examples about reinforced concrete shell are presented. Validity of this method is studied by comparing with the experimential results of Hedgren and the numerical analysis of Lin.

  • PDF

Numerical Simulation of the Coalescence of Air Bubbles in Turbulent Shear Flow: 2. Model Application (난류전단 흐름에서의 기포응집에 관한 수치모의: 2. 모형의 적용)

  • Jun, Kyung Soo;Jain, Subhash C.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1365-1373
    • /
    • 1994
  • A Monte-Carlo simulation model, developed to predict size distribution of air bubbles in turbulent shear flow, is applied to a laboratory-scale problem. Sensitivity to various numerical and physical parameters of the model is analyzed. Practical applicability of the model is explored through comparisons of results with experimental measurements. Bubble size increases with air-water discharge ratio and friction factor. Bubble size decreases with increasing mean flow velocity, but the total bubble surface area in the aeration region remains fairly constant. The effect on bubble size distribution of the longitudinal length increment in the simulation model is negligible. A larger radial length increment yields more small and large bubbles and fewer in between. Bubble size distribution is significantly affected by its initial distribution and the location of air injection. Collision efficiency is introduced to explain the discrepancy between collisions with and without coalescence.

  • PDF

Experimental Validation of the Radial Mapping Rule in Bounding Surface Plasticity Model (경계면 소성 모델의 방사 사상 법칙에 대한 실험적 검토)

  • Jung, Young-Hoon;Lee, Ju-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.171-181
    • /
    • 2013
  • The radial mapping rule in bounding surface model was experimentally investigated by analyzing the drained stress probe tests on Chicago clays. The experimental data obtained from 10 drained stress probe paths were analyzed to calculate the directions of the plastic strain increments. The anisotropic bounding surface model was adopted to represent a bounding yield surface which resides in the pre-consolidation yield stress of undisturbed clays. The projection origins were estimated by finding the interceptions of the straight lines passing through the current stress point and the imaginary yield stress point on the bounding surface. The results show that the projection origin is not fixed at a point but moves toward the direction of the stress probe path after it is established around the initial stress point.

Seismic Performance Evaluation of Flat Column Dry Wall System and Wall Slab System Structures (무량복합 및 벽식 구조시스템의 내진성능평가)

  • Kang, Hyungoo;Lee, Minhee;Kim, Jinkoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.259-266
    • /
    • 2012
  • In this paper the seismic performance of a flat plate wall system structure was evaluated based on the ATC-63 approach, and the results were compared with those of a wall slab structure having the same size. As analysis model structures, a twelve story flat plate wall structure and a wall slab structure were designed based on the KBC-2009, and their seismic performances and collapse behaviors were evaluated by nonlinear static and incremental dynamic analyses(IDA). It was observed that the flat plate wall structure was designed with smaller amount of reinforced concrete, and showed slightly larger displacement response compared with those of the wall slab structure. The collapse margin ratios of the two structures obtained from the incremental dynamic analyses satisfied the limit states specified in the ATC-63, and the structures turned out to have enough capacity to resist the design level seismic load.