• Title/Summary/Keyword: 증기 압축시스템

Search Result 53, Processing Time 0.023 seconds

A Design Study for Improving Thermal Efficiency of Combined Cycle Power Plants using LNG Cold Energy - Design and Off-design Modelling of Gas-turbine Based Combined Cycle - (LNG 냉열을 이용한 복합발전 플랜트의 성능향상에 관한 연구(I) - 복합화력 발전플랜트의 설계점 및 탈설계점 모델링 -)

  • 오세기;김병일
    • Journal of Energy Engineering
    • /
    • v.8 no.1
    • /
    • pp.159-165
    • /
    • 1999
  • 복합화력 발전플랜트의 운전에서 특히 하절기의 첨두부하시에 외기온도의 상승으로 인한 가스터빈의 출력 감소를 해결하기 위한 방법으로 LNG 연료가 보유하고 있는 냉열을 이용하여 압축기로 유입되는 공기 온도를 감소시키는 냉각시스템의 개념을 개발하고자 복합화력 발전플랜트에 대한 설계점 및 외기온도 변화에 대한 탈설계점 모델링 연구를 수행하였다. 대상 프랜트는 940 MW 서인천 복합 발전플랜트 모듈의 단위 블록을 선택하였으며 발전플랜트 전용 해석코드인 GateCycle을 이용하여 가스터빈과 증기사이클의 주요 기기 들에 대한 모델을 개발하였다. 개발된 모델의 결과를 대상플랜트의 시운전결과와 비교하여 모델의 적정성을 검증하였다. 출력, 효율, 온도 및 유량 등 주요 설계인자들이 최대 ~1.3%의 상대오차 범위 안에서 만족할 만한 신뢰도를 갖는 것을 확인하였다. 탈설계점 성능해석은 본 논문과 관련한 연구의 주목적인 LNG 냉열에 의한 유입공기 냉각시스템 설계시의 경계변수인 외기온도 증가에 대한 각 사이클의 특성변화를 대상으로 하였다. 종합적으로 외기온도가 증가하면 압축기로 유입되는 공기의 양과 이에 대응하는 소요 연료량이 동시에 감소하므로 연소에 따른 가스터빈의 팽창비가 감소한다. 이로 인하여 외기온도 증가시에 가스터빈 출력감소율은 0.5%/$^{\circ}C$로서 배기가스를 이용하는 증기사이클의 출력감소율 0.2%/$^{\circ}C$에 비해 민감하므로 가스터빈 유입공기의 냉각시스템의 설계는 복합화력발전 플랜트의 효율 향상에 크게 기여할 것으로 예상된다.

  • PDF

Improvement of Post-combustion CO2 Capture Process using Mechanical Vapor Recompression (기기적 증기 재압축 시스템을 적용한 연소 후 이산화탄소 포집공정 개선 연구)

  • Jeong, Yeong Su;Jung, Jaeheum;Han, Chonghun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • In order to reduce the anthropogenic emission of greenhouse gases, CCS technology has emerged as the most promising and practical solution. Among CCS technology, post-combustion $CO_2$ capture is known as the most mature and effective process to remove $CO_2$ from power plant, but its energy consumption for chemical solvent regeneration still remains as an obstacle for commercialization. In this study, a process alternative integrating $CO_2$ capture with compression process is proposed which not only reduces the amount of thermal energy required for solvent regeneration but also produces $CO_2$ at an elevated pressure.

A Study on the Micro Vapor Compressor based on Microfabrication Process for the Application to the Micro Miniature Refrigeration System (초소형 냉동시스템의 응용을 위한 마이크로 증기 압축기의 개발 및 성능에 관한 연구)

  • Yoon, Jae-Sung;Choi, Jong-Won;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.477-482
    • /
    • 2006
  • In this study, a micro vapor compressor has been designed, fabricated and tested. The micro vapor compressor was made of silicon substrates and fabricated by micromachining process. The compressor is driven by a piezoelectric actuator which is widely used in microfluidic systems because of its strong force and rapid response. The actuator is a bimorph structure which consists of a silicon membrane and a piezoelectric ceramic film. A simulation work was conducted on the performance characteristics of the compressor. The simulation investigated the flow rate variation under various back pressure conditions. Experimental works were carried out on the operation of a compressor and the test results were compared with the simulation results.

  • PDF

Design and Evaluation of Multiple Effect Evaporator Systems According to the Steam Ejector Position (증기 이젝터 위치에 따른 다중효용증발시스템의 설계 및 성능분석)

  • Kim, Deukwon;Choi, Sangmin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.11
    • /
    • pp.434-443
    • /
    • 2016
  • The evaporation of water from an aqueous solution is widely used in the food, desalination, pulp, and chemical industries. Usually, a large amount of energy is consumed in the evaporation process to boil off water due to atmospheric pressure. As a way of improving the energy efficiency of the evaporation process, the combination of multiple effect evaporation and thermal vapor recompression has been proposed and has become a successful technique. In this study, 4 multiple-effect falling film type evaporators for sugar solution are designed and the energy efficiency of the system is analyzed in response to the selection of the steam ejector position. Energy efficiency is increased and vapor is more compressed in the steam ejector as the Thermal Vapor Recompression (TVR) is arranged in the rear part of the evaporator system. A simplified 0-dimensional evaporator model is developed using non-linear equations derived from mass balances, energy balances, and heat transfer equations. Steam economy is calculated to compare the evaporation performance of the 4 proposed evaporators. The entrainment ratio, compression ratio, and expansion ratio are computed to check the ejector performance.

A Simulation Method for Predicting the Performance and the NOx Level of Gas Turbine System (가스터빈 시스템의 성능 및 NOx 배출 예측을 위한 모사방법)

  • Lee, Han-Goo;Kang, Seung-Jong;Lee, Chan
    • Journal of Energy Engineering
    • /
    • v.3 no.1
    • /
    • pp.28-35
    • /
    • 1994
  • 가스터빈 사이클의 성능 및 NOx 배출물 생성량 예측을 위한 모사 프로그램을 개발하였다. 압축기 및 터빈은 등엔트로피 과정으로, 연소기는 Thermal NOx 생성을 수반하는 연소모형으로서 가정하였다. 또한 터빈 냉각을 위한 추출공기량과 냉각방식이 성능에 미치는 적절한 상관 관계식을 도입하여 평가하였다. 본 성능평가 모델을 이용하여 예측된 결과와 실험결과간의 비교를 통하여 모델의 타당성을 검증하였고, 증기 분사량, 터빈 냉각변수 및 압축비 변화에 따른 예측결과를 통하여 가스터빈 시스템 최적 운전 및 설계기준을 제시하였다.

  • PDF

Changes in Performance and Operating Condition of a Gas Turbine Combined Heat and Power System by Steam Injection - A Focus on Compressor Operation (증기분사에 의한 가스터빈 열병합발전 시스템의 성능과 운전조건 변화 - 압축기 작동 변화를 중심으로)

  • Kang, Soo-Young;Kim, Tong-Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.68-75
    • /
    • 2011
  • This study simulated the effect of steam injection on the performance and operation of a gas turbine combined heat and power (CHP) system. A commercial simple cycle gas turbine was analyzed. A full off-design analysis was carried out to investigate the variations in not only engine performance but also the operating characteristics of the compressor caused by steam injection. Variation in engine performance and operation characteristics according to various operation modes were examined. First, the impact of full steam injection was investigated. Then, operations aiming to guarantee a minimum compressor surge margin, such as under-firing and partial steam injection, were investigated. The former and latter were turned out to be relatively superior to each other in terms of power and efficiency, respectively.

Study of the Operation Characteristics of the Supersonic Steam Ejector System (초음속 증기 이젝터 시스템의 작동 특성에 관한 연구)

  • 김희동;이준희;우선훈;최보규
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.33-40
    • /
    • 2001
  • In order to investigate the operating characteristics of a supersonic steam ejector, the axisymmetric, compressible, Reynolds-averaged, Wavier-Stokes computations are performed using a finite volume method. The secondary and back pressures of the ejector system with a second throat are changed to investigate their effects on the suction mass flow. Three operation modes of the steam ejector system, the critical mode, subcritical mode and back flow mode, are discussed to predict the critical suction mass flow. The present computations are validated with some experimental results. The secondary and back pressures of the supersonic steam ejector significantly affect the critical suction mass flow. The present computations predict the experimented critical mass flow with fairly good accuracy A good correlation is obtained for the critical suction mass flow. The present results show that provided the primary nozzle configuration and secondary pressure are blown, we can predict the critical mass flow with good accuracy.

  • PDF

A study on the development of MVR desalination plant and its performance analysis (MVR해수담수화플랜트의 개발 및 성능에 관한 연구)

  • Kim, Yeongmin;Chun, Wongee;Kim, Dongkook
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.59-65
    • /
    • 2016
  • MVR evaporation is a method of pressurizing the evaporating steam to raise its temperature with an electric compressor instead of burning fuel and reusing the heat source through the embraced heat exchanger to minimize energy use. MVR desalination system with wind power uses varying wind power instead of stable electricity and can flexibly control the volume of fresh water production. The present study introduces the design, construction and operation of a MVR desalination system of 30ton/day capacity. Experimental results, MVR compression ratio is higher than 1.5, temperature difference of the main heat exchanger is $5{\sim}7^{\circ}C$. This value shows the same performance as the designed value.

Experimental Study of Adoption of Alternative Refrigerant for Avionic Equipment Cooling System (항공전자기기용 냉각시스템의 대체냉매 적용에 관한 실험적 연구)

  • Kang, Hoon;Jung, Jongho;Jung, Minwoo;Chi, Yongnam;Yoo, Yongseon;Choi, Heeju;Byeon, Youngman;Kim, Youngjin;Oh, Kwangyoon;Kim, Yongchan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.431-439
    • /
    • 2013
  • A cooling system is adopted to control the thermal load from the avionic equipments in an aircraft for stable operation. In this study, an avionic cooling system was designed and manufactured by adopting a vapor compression cycle with a closed-loop air-circulation system to investigate the operating characteristics of an alternative refrigerant. The performance characteristics of a cooling system adopting R236fa as an alternative refrigerant were experimentally determined by varying the refrigerant charging amount, expansion valve opening, and compressor rotation speed. The experimental results were analyzed and compared with those of a cooling system adopting R124 as a refrigerant. The possibility of the adoption of R236fa as an alternative refrigerant was verified, and design solutions were suggested to improve the system efficiency.

Solar Cooling Technology (태양열 냉방 시스템)

  • Baek, Nam-Choon
    • Solar Energy
    • /
    • v.18 no.2
    • /
    • pp.31-49
    • /
    • 1998
  • Four main solar cooling technologies have been developed over the past twenty years are considered in this paper. These technologies include absorption, vapor compression, desiccant, adsorption, etc. All of these solar cooling technologies considered here are solar thermal ones. The destails of the thermodynamic cycle of these solar cooling technologies are given. The general concept of these solar cooling and the relative advantages among them are also presented. At last, the status and outlook for each approach are summarized.

  • PDF