• Title/Summary/Keyword: 증기온도

Search Result 482, Processing Time 0.024 seconds

The Primary Research on oil Conversion Technology of biomass by Pyrolysis (열분해에 의한 바이오매스의 유류자원화 기술에 관한 기초 연구)

  • Chio, Hyuk-Jin;Yoo, Sun-Kyoung;Oh, Sang-Woo;Lee, Seung-Guk;Lee, Seung-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.112-117
    • /
    • 2007
  • This study aims to develop an alternative energy like oil made from marine organic waste by marine products waste, spent fishing nets. There are already many commercial examples and case studies based on the petroleum industry-refuse plastic or refuse tire, however, it is rare that a research developing alternative energy from food waste and organic waste. Therefore, this study investigated the oil made from thermal decomposition under the high temperature and high pressure condition, and examined the possibility for commercial use by testing its own characteristics. A bio-oil from thermal decomposition at $250^{\circ}C$ and 40 atm was hard to remove impurities because of its high viscosity, showed lower caloric value than heavy oil, and generated various gases which were not appropriate for the use of fuel. It is noticeable that thermal decomposition was occurred at $250{\pm}5^{\circ}C$ using steam pressure, which much lower compared to the existing method of thermal decomposition, more than $500^{\circ}C$. Since the high viscosity of bio-oil, it is necessary a further study to use as liquid fuel.

  • PDF

Design Criteria Derivation of Supercritical Carbon Dioxide Power Cycle based on Levelized Cost of Electricity(LCOE) (전력단가추정기반 초임계 이산화탄소 발전 시스템 최적 설계 인자 도출)

  • Park, Sungho;Cha, Jaemin;Kim, Joonyoung;Shin, Junguk;Yeom, Choongsub
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.441-447
    • /
    • 2017
  • The economic analysis for the power plant developed in the conceptual design phase is becoming more important and, research on process optimization for process development that meets the target economic is actively carried out. In the filed of power generation systems, economic assessment methods to predict the levelized cost of electricity (LCOE) has been widely applied for comparing economic effect quantitatively. In this paper, the platform that design criteria of key component required to optimize economic of power cycle can be calculated reversely was established roughly and design criteria of the key equipment (Compressor, turbine, heat exchanger) required to meet the target LCOE (the LCOE of supercritical steam Rankine cycle) was derived when the supercritical $CO_2$ power cycle is applied to the coal-fired power plant.

Evaluation of High-Temperature Tensile Property of Diffusion Bond of Austenitic Alloys for S-CO2 Cycle Heat Exchangers (고온 S-CO2 사이클 열교환기용 스테인리스강 및 Fe-Cr-Ni 합금 확산 접합부의 고온 인장 특성평가)

  • Hong, Sunghoon;Sah, Injin;Jang, Changheui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1421-1426
    • /
    • 2014
  • To improve the inherent safety of the sodium-cooled fast reactor (SFR), the supercritical $CO_2$ ($S-CO_2$) Brayton cycle is being considered as an alternative power conversion system to steam the Rankine cycle. In the $S-CO_2$ system, a PCHE (printed circuit heat exchanger) is being considered. In this type of heat exchangers, diffusion bonding is used for joining the thin plates. In this study, the diffusion bonding characteristics of various austenitic alloys were evaluated. The tensile properties were measured at temperatures starting from the room temperature up to $650^{\circ}C$. For the 316H and 347H types of stainless steel, the tensile ductility was well maintained up to $550^{\circ}C$. However, the Incoloy 800HT showed lower strength and ductility at all temperatures. The microstructure near the bond line was examined to understand the reason for the loss of ductility at high temperatures.

Calculation of non-condensable gases released in a seawater evaporating process (해수 증발과정에서의 기체방출량 계산)

  • Jeong, Kwang-Woon;Chung, Hanshik;Jeong, Hyomin;Choi, Soon-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.182-190
    • /
    • 2017
  • All liquids contain a small amount of gaseous components and the amount of gases dissolved in a liquid is in accordance with Henry's Law. In a multi-stage thermal-type seawater desalination plant, as the supplied seawater undergoes variations in temperature and pressure in each evaporator, the gases dissolved in the seawater are discharged from the liquid. The discharged gases are carbon dioxide, nitrogen, oxygen, and argon, and these emitted gases are non-condensable. From the viewpoint of convective heat transfer, the evaluation of non-condensable gas released during a vacuum evaporation process is a very important design factor because the non-condensable gases degrade the performance of the cooler. Furthermore, in a thermal-type seawater desalination plant, most evaporators operate under vacuum, which maintained through vacuum system such as a steam ejector or a vacuum pump. Therefore, for the proper design of a vacuum system, estimating the non-condensable gases released from seawater is highly crucial. In the study, non-condensable gases released in a thermal-type seawater desalination plant were calculated quantitatively. The calculation results showed that the NCG releasing rate decreased as the stage comes getting a downstream and it was proportional to the freshwater production rate.

Experimental Study on Compression/Absorption High-Temperature Hybrid Heat Pump with Natural Refrigerant Mixture (천연혼합냉매를 이용한 압축/흡수식 고온히트펌프의 실험적 연구)

  • Kim, Ji-Young;Park, Seong-Ryong;Baik, Young-Jin;Chang, Ki-Chang;Ra, Ho-Sang;Kim, Min-Sung;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1367-1373
    • /
    • 2011
  • This research concerns the development of a compression/absorption high-temperature hybrid heat pump that uses a natural refrigerant mixture. Heat pumps based on the compression/absorption cycle offer various advantages over conventional heat pumps based on the vapor compression cycle, such as large temperature glide, temperature lift, flexible operating range, and capacity control. In this study, a lab-scale prototype hybrid heat pump was constructed with a two-stage compressor, absorber, desorber, desuperheater, solution heat exchanger, solution pump, liquid/vapor separator, and rectifier as the main components. The hybrid heat pump system operated at 10-kW-class heating capacity producing hot water whose temperature was more than $90^{\circ}C$ when the heat source and sink temperatures were $50^{\circ}C$. Experiments with various $NH_3/H_2O$ mass fractions and compressor/pump circulation ratios were performed on the system. From the study, the system performance was optimized at a specific $NH_3$ concentration.

Study on Performance of Water Vapor-Permeation Through Hydrophilic Polymer Membranes (친수성 고분자 막을 이용한 수증기 투과 성능에 관한 연구)

  • Rhim Ji-Won;Yun Tae-Il;Seo Moo-Young;Cho Hyun-Il;Ha Seong-Yong
    • Membrane Journal
    • /
    • v.16 no.2
    • /
    • pp.115-122
    • /
    • 2006
  • In this study the membrane preparation and water vapor permeation of the hydrophilic polymer materials, polyaminosiloxane and polyhydroxylsiloxane, used as the coating materials for the preparation of asymmetric flat and hollow fiber membranes were investigated. And the water vapor permeation towards air permeation and their permselectivity were intensively studied for the resulting Resin A/Resin C (coupling agent) and Resin B/Resin C membranes. The water vapor permeability for 3 wt% Resin C introduced into Resin A (Resin A/Resin C) membrane was higher than for 1 and 5 wt% membranes and also water vapor permeability increased with increasing operating temperatures. In addition, at this content of 3 wt% Resin C, the absorption capability became maximum through dynamic equilibrium absorption experiment. Water vapor permeability, 43578 Barrer (1 Barrer = $10^{-10}cm^3(STP){\cdot}cm/cm^2{\cdot}s{\cdot}cmHg$) and 53000 Barrer, and the selectivity of $P(H_2O)P(Air)$, 101.3 and 102.6 were shown at 25 and $35^{\circ}C$, respectively.

Preparation and Characterization of Kalsilite ($KAISiO_4$) as a Novel Inorganic Membrane Material (새로운 무기분리막 재료로서의 Kalsilite ($KAISiO_4$) 제조와 물성)

  • Lee, Yong-Taek;Ahn, Hyo-Seong
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.103-107
    • /
    • 2008
  • Membrane process has been focused as an alternative separation process because not only it exhibits a high selectivity compared with a traditional distillation process, but also it is known to be an energy saving separation process. Inorganic membrane, especially zeolite membrane, has been studied since it can be operated in severe conditions compared to the organic membranes. Recently, new zeolite materials are tested as an inorganic membrane material to overcome disadvantages of existing zeolite membranes. Kalsilite can be used as an inorganic membrane material for gas separation and selective water separation from water/organic mixtures because it is expected to be hydrophilic resulted from Si/Al ratio of 1 like zeolite 4A and has a narrow pore size of 0.36 nm. In this study, kalsilite was synthesized by a new economical hydrothermal process using Si : Al : K : $H_2O$ mole ratio of 1 : 1 : 8 : 60. The synthesized kalsilite powder was confirmed by XRD and has a mean diameter of $2.73{\mu}m$. The vapor adsorption test showed the synthesized kalsilite is hydrophilic.

A Study on the Performance of Boiling Beat Transfer of Inclined Thermosyphon Heat Exchangers with Internal Grooves (경사 열사이폰 열교환기의 비등열전달 성능에 관한 연구)

  • Cho, Dong-Hyun;Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.2
    • /
    • pp.202-209
    • /
    • 2005
  • This study concerns the performance of boiling heat transfer in inclined thermosyphons with internal grooves. A study was carried out with the performance of the heat transfer of the inclined thermosyphon having 60 internal grooves in which boiling and condensation occur. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphon is also tested for comparison. Distilled water, methanol and ethanol have been used as the working fluid. The inclination angle, three working fluids, heat flux and the boiling heat transfer coefficient at the evaporator zone are estimated from the experimental results. The experimental results have been assessed and compared with existing correlations. Imura's and Kusuda's correlation for boiling showed in good agreement with experimental results within ${\pm}20%$ in plain thermosyphon. The high heat transfer coefficient was found between $25^{\circ}$ and $30^{\circ}$ of inclination angle for water and between $20^{\circ}$ and $25^{\circ}$ for methanol and ethanol. The relatively high rates of heat transfer have been achieved in the thermosyphon with internal micro grooves.

  • PDF

Studies on the Morphology of Smoke Particles for Each Type of Fire by Using Steady State Tube Furnace (등속공급 튜브연소로를 이용한 각 연소조건에서의 연기입자 형상 분석)

  • Goo, Jaehark
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.44-51
    • /
    • 2014
  • Smoke from fire is a mixture of combustion gases and particles which include micro-droplets formed from condensed organic vapors and carbonaceous agglomerates. The inhalation of smoke particles causes adverse health effects, and it is prerequisite for the hazard and risk analysis of the smoke particles to know how they behaviour in the respiratory tract. The characteristics of the absorption and adsorption of toxic gases and the amount and location of the particle deposition within the respiratory tract that determine the adverse health effects are related to the morphology and the size distribution of smoke particles. In the present work, as a preliminary study for the adverse health effects of smoke particles, the morphologies of the smoke particles from combustible materials were investigated for each fire stage: smouldering, well-ventilated flaming, small under-ventilated flaming, fully-developed under-ventilated fire. The steady-state tube furnace method given in ISO/TS 19700 was used for the generation of smoke particles. The fire stages were controlled by changing furnace temperature and equivalent ratio. The morphologies were analyzed by using Transmission Electron Microscope (Bio-TEM) by collecting the particles on TEM grids put on each stage of a cascade impactor.

Growth of $CdS_{0.67}Se_{0.33}$ single crystal by sublimation method and their photoconductive characteristics (승화법에 의한 $CdS_{0.67}Se_{0.33}$ 단결정 성장과 광전도 특성)

  • Hong, K.J.;Lee, S.Y.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.131-139
    • /
    • 1998
  • $CdS_{0.67}Se_{0.33}$ single crystal was grown by vertical sublimation method of closed tube physical vapour deposition. The (0001) growth plane of oriented single crystals was confirmed from the back-ref1ection Laue patterns. From the Hall effects by van der Pauw method, the as-grown $CdS_{0.67}Se_{0.33}$ single crystals were found to be n-type semiconductors. The mobility appeared to be decreased by lattice scattering at temperature range from 150K to 293K and by impurity scattering at temperatures ranging from 30K to 150K In order to explore its applicability in photoconductive cells, we measured the ratio of photo-current to dark-current (pc/dc), maximum allowable power dissipation (MAPD), spectral response and response time respectively. The results indicated that for the samples annealed in Cu vapour the photoconductive characteristics are best. We obtained sensitivity of 0.99, the value of pc/de of $1.84{\times}10^{7}$, the MAPD of 323mW and the rise and decay time of 9.3 ms and 9.7 ms, respectively.

  • PDF