• Title/Summary/Keyword: 중합 효과

Search Result 346, Processing Time 0.023 seconds

Effect of Various Factors on Early THP-1 Cell Adhesion Induced Phorbol 12-Myristate 13-Acetate (PMA) (Phorbol 12-myristate 13-acetate (PMA) 처리로 유도되는 THP-1 세포의 초기 부착에 관한 다양한 인자의 효과)

  • Jo, Yong-Sam;Shin, Ji-Hyun;Choi, Tae-Saeng
    • Journal of Life Science
    • /
    • v.18 no.7
    • /
    • pp.952-957
    • /
    • 2008
  • We evaluated the effects of various factors (e.g., serum, inhibitors of protein synthesis, and cytoskeleton and protein kinases) on early PMA-induced THP-1 cell adhesion using an adhesion assay with Sulforhodamine B (SRB) staining, which was used to assess the proliferation of the attached cells. THP-1 cell adhesion to a plastic substrate was detected 1 hr after exposure to Phorbol 12-Myristate 13-Acetate (PMA) and peaked after 18 hr. At concentrations > 25 nM PMA, the level of adhesion did not change. Based on our preliminary results, we used 25 nM PMA and 5 hr of culture as standard assay conditions. Early PMA-induced cell adhesion was not affected by the presence of serum or PD 98059 in the culture medium, but was affected by the addition of PKC inhibitors and cycloheximide. In the presence of actin inhibitor with PMA, the cell adhesion increased when comparing with PMA treatment only. Thus, early PMA-induced adhesion of THP-1 cells does not require serum in the culture medium, MAP-kinase activation, or actin polymerization, but does require de novo protein synthesis and PKC activation. Our SRB-based cell adhesion assay may be used to screen other PKC inhibitors.

Preparation and Characterization of PEG-PLA(PLGA) Micelles for Solubilization of Rosiglitazone (Rosiglitazone 가용화를 위한 PEG-PLA(PLGA) 고분자 미셀의 제조 및 특성분석)

  • Kim, Yon-Hwan;Im, Jeong-Hyuk;Min, Hyun-Su;Kim, Jun-Ki;Lee, Yong-Kyu;Park, Go-Eun;Cho, Kwang-Jae;Huh, Kang-Moo
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.274-281
    • /
    • 2010
  • In this study, PEG-PLA(or PLGA) amphiphilic di-block copolymers were synthesized by ring opening polymerization of D,L-lactide(or glycolide) and applied to polymeric micelle system for solubilization of a rosiglitazone as diabetes drug. The drug could be efficiently loaded into the polymer micelle by solid dispersion technique, and the drug-loaded micelles were characterized and evaluated as a drug delivery carrier by fluorescence spectrometer, DSC, and DLS measurements. The colloidal stability of drug loaded micelles in aqueous media could be enhanced by addition of 2-hydroxy-N-picolylnitinamide as a hydrotropic agent. The polymer micelles also showed biocompatible and nontoxic properties in vitro cell viability using MTT assay, and the drug loaded micelles were observed to be more effective than free drug for decreasing glucose in blood of rats.

Preparation and Characterization of Proton Conducting Crosslinked Membranes Based On Poly(vinyl chloride) Graft Copolymer (Poly(vinyl chloride) 가지형 공중합체를 이용한 수소이온 전도성 가교형 전해질막의 제조와 분석)

  • Kim, Jong-Hak;Koh, Jong-Kwan;Choi, Jin-Kyu;Park, Jung-Tae;Koh, Joo-Hwan
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.261-267
    • /
    • 2008
  • A graft copolymer consisting of poly(vinyl chloride) (PVC) backbone and poly(hydroxyethyl acrylate) (PHEA) side chains was synthesized via atom transfer radical polymerization (ATRP). Direct initiation of the secondary chlorines of PVC facilitates grafting of hydrophilic PHEA monomer. This graft copolymer, i.e. PVC-g-PHEA was cross-linked with sulfosuccinic acid (SA) via the esterification reaction between -OH of the graft copolymer and -COOH of SA, as confirmed by FT-IR spectroscopy. Ion exchange capacity (IEC) continuously increased to 0.87meq/g with increasing concentrations of SA, due to the increasing portion of charged groups in the membrane. However, the water uptake increased up to 20.0wt% of SA concentration above which it decreased monotonically. The membrane also exhibited a maximum proton conductivity of 0.025 S/cm at 20.0 wt% of SA concentration, which is presumably due to competitive effect between the increase of ionic sites and the crosslinking reaction.

EFFECTS OF POLYPHOSPHATE MIXED IN ACRYLIC RESIN ON THE ATTACHMENT AND GROWTH OF ORAL BACTERIA (Acrylic Resin에 혼합된 Polyphosphate가 미생물의 부착 및 성장에 미치는 영향)

  • Hong, Sun-Hee;Choi, Yeong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.1
    • /
    • pp.69-79
    • /
    • 2003
  • The purpose of this present study was to develop a new way of self-curing acrylic resin, using commercially available polyphosphate, Calgon, which is known to be antimicrobial and safe. For the study, polyphosphate(polyP) was blended with acrylic powder and devided into four groups as follows: no polyP(control), 1% polyP, 2% polyP, and 3% polyP. For the experiment, Streptococcus mutans GS5, Streptococcus sobrinus 6715, Streptococcus gordonii G9B and Challis, Porphyromonas gingivalis 2561, and Candida albicans ATCC 90027 were used. Resin specimens in each group were tested in vitro for the purpose of investigating the effect of polyP on the microbial attachment, growth and hydrophobicity of the resin surface. The results were as follows. 1. PolyP added to the acrylic resin decreased attachment of S. mutans GS5, S. sobrinus 6715, S. gordonii G9B. The greater binding inhibition was found in acrylic resin polymerized with polyP at higher concentrations. 2. The addition of polyP to acrylic resin failed to significantly affect the growth of the tested microorganisms. 3. The addition of polyP to acrylic resin seemed to reduce hydrophobicity of the acrylic resin. PolyP in acrylic resin does not seem to exert a direct antibacterial activity, but rather inhibit attachment of oral bacteria, especially mutans streptococci to saliva-coated acrylic resin. The acrylic resin reduces attachment of streptococci may be due to the decreased hydrophobicity caused by polyP added to the resin. PolyP may be included to acrylic resin to inhibit dental caries which often occurs when removable acrylic resin appliance is placed.

  • PDF

Manufacture of Biodegradable Polymer with Wastepaper(I) - Pretreatment and Analysis of Chemical Components On Wastepaper - (폐지를 이용한 생분해성 고분자의 제조(I) - 폐지의 화학적 조성 분석 및 전처리 -)

  • Kwon, Ki-Hun;Lim, Bu-Kug;Yang, Jae-Kyung;Chang, Jun-Pok;Lee, Jong-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.34-41
    • /
    • 2000
  • Recently many scientists have tried to synthesize biodegradable polymers due to durable and non-biodegradable products of conventional synthetic plastics when these were wasted in nature. So to reuse the wastepapers for biodegradable polymer resources, ONP (old newsprint), OCC (old corrugated containerbpard) were carried out by the pretreatment of chlorinite, hypochlorite and oxygen-alkali treatment conditions. For manufacturing of biodegradable polymer with wastepaper, this study performed to investigate change of chemical components and optimal pretreatment condition. The summarized results in this study were as follows: Lignin content in ONP and OCC was was higher than in MOW and ash content was the highest in MOW. More amount of ash components were reduced by wet defiberation than by dry defiberation. Wet defiberation fiber are better than dry defiberated fiber in chemical pretreatment condition for wastepapers, and the best result was obtained in the condition of sodium chlorite at $70^{\circ}C$, because it has high delignification ratio, ${\alpha}$-cellulose contents and degree of polymerization in this treatment condition. Oxygen-alkali treatment condition is the worst method because of low yield, low degree of polymerization in this pretreatments.

  • PDF

Processing Conditions and Quality Stability of Filefish Steak during Frozen Storage (말쥐치 스테이크가공조건(加工條件) 및 동결저장중(凍結貯藏中)의 품질안정성(品質安定性))

  • Jeon, Joong-Kyun;Jung, Soo-Yeol;Ha, Jae-Ho;Park, Hyang-Suk;Lee, Eung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.127-132
    • /
    • 1984
  • Processing conditions of filefish steaks and effect of soybean protein on quality during frozen storage were investigated. Additives which is added to the filefish meat were 1% of table salt, 0.2% polyphosphate, 0.5% of sodium bicarbonate, 0.2% of monosodium glutamate, 0.2% of red pepper powder, 0.4% of white pepper powder, 0.2% of garlic powder and 0.2% of nutmeg. The mixture was minced in the stone mortar and then stored at -3 to $-5^{\circ}C$ for two days prior to frozen storage. The benefical effects of adding 5% of soybean protein to the filefish steaks were the control of free drip, oxidative rancidity and in texture that exhibited the improvement of quality. The quality of frozen filefish steaks, by sensory evaluvation, was not inferior to that of hamburger on the market.

  • PDF

Processing Conditions and Quality Stability of Precooked Frozen Fish Foods during Frozen Storage - I. Processing Conditions and Quality Stability of Mackerel Steak during Frozen Storage - (어육동결조리식품(魚肉凍結調理食品)의 가공조건(加工條件) 및 품질(品質) 안전성(安全性)에 관한 연구(硏究) - 제 1 보 : 고등어 Steak 가공조건(加工條件) 및 동결저장중(凍結貯藏中)의 품질안전성(品質安全性) -)

  • Lee, Eung-Ho;Jeon, Joong-Kyun;Cho, Soon-Yeong;Cha, Yong-Jun;Jung, Soo-Yeol
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.324-329
    • /
    • 1982
  • Processing conditions of fish steaks and the effect of soybean protein on quality during frozen storage were investigated. Added to the fish meat were 1.0% of table salt, 0.5% of sodium bicarbonate, 0.2% of polyphosphate, 0.2% of monosodium glutamate, 2.0% of sugar, 0.2% of red pepper powder, 0.2% of white pepper powder, 0.2% of garlic powder and 0.2% of nutmeg. The mixture was minced with stone mortar and then stored at $-3^{\circ}\;to\;-5^{\circ}C$ for two days prior to frozen storage. The beneficial effects of adding soybean protein(5%) to the fish steaks were the control of color change, free drip, oxidative rancidity and in texture that exhibited the improvement of quality. The quality of frozen mackerel steaks, by sensory evaluation, was not inferior to that of hamburger on the market.

  • PDF

Pomegranate (Punica granatum L.) Peel Extract Inhibits Quorum Sensing and Biofilm Formation Potential in Yersinia enterocolitica (석류 껍질추출물이 식중독균 여시니아 엔테로콜리티카의 쿼럼센싱과 바이오필름 형성능 억제)

  • Oh, Soo Kyung;Chang, Hyun Joo;Chun, Hyang Sook;Kim, Hyun Jin;Lee, Nari
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.4
    • /
    • pp.357-366
    • /
    • 2015
  • Quorum sensing (QS) is involved in the process of cell-to-cell communication and as a gene regulatory mechanism, which has been implicated in bacterial pathogenicity. Bacteria use this QS system to control a variety of physiological processes. In this study, pomegranate (Punica granatum L.) peel extract (PPE) was first screened for its ability to inhibit QS in bio-reporter strains (Chromobacterium violaceum and C. violaceum CV026). Next, the ability of PPE to inhibit swimming motility and biofilm formation was examined in Y. enterocolitica. Additionally, changes in the expression of specific genes involved in the synthesis of the N-acylhomoserine lactones (AHLs; yenI and yenR) and in the flagellar regulon (fliA, fleB and flhDC) were evaluated by reverse transcription (RT)-PCR. The results show that PPE specifically inhibited and reduced QS-controlled violacein production by 78.5% in C. violaceum CV026, and decreased QS-associated biofilm formation and swimming motility in Y. enterocolitica without significantly affecting bacterial growth. These inhibitory effects were also associated with the down-regulation of gene expression involved in the synthesis of AHLs and in motility. Our results suggest that PPE could be a potential therapeutic agent to prevent enteropathogens in humans, as well as highlight the need to further investigate the in vivo properties of PPE for clinical applications.

Unique Cartilage Matrix-Associated Protein Alleviates Hyperglycemic Stress in MC3T3-E1 Osteoblasts (Unique cartilage matrix-associated proteins에 의한 MC3T3-E1 조골세포에서의 고혈당 스트레스 완화 효과)

  • Hyeon Yeong Ju;Na Rae Park;Jung-Eun Kim
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.851-858
    • /
    • 2023
  • Unique cartilage matrix-associated protein (UCMA) is an extrahepatic vitamin K-dependent protein rich in γ-carboxylated (Gla) residues. UCMA has been recognized for its ability to promote osteoblast differentiation and enhance bone formation; however, its impact on osteoblasts under hyperglycemic stress remains unknown. In this paper, we investigated the effect of UCMA on MC3T3-E1 osteoblastic cells under hyperglycemic conditions. After exposure to high glucose, the MC3T3-E1 cells were treated with recombinant UCMA proteins. CellROX and MitoSOX staining showed that the production of reactive oxygen species (ROS), which initially increased under high-glucose conditions in MC3T3-E1 cells, decreased after UCMA treatment. Additionally, quantitative polymerase chain reaction revealed increased expression of antioxidant genes, nuclear factor erythroid 2-related factor 2 and superoxide dismutase 1, in the MC3T3-E1 cells exposed to both high glucose and UCMA. UCMA treatment downregulated the expression of heme oxygenase-1, which reduced its translocation from the cytosol to the nucleus. Moreover, the expression of dynamin-related protein 1, a mitochondrial fission marker, was upregulated, and AKT signaling was inhibited after UCMA treatment. Overall, UCMA appears to mitigate ROS production, increase antioxidant gene expression, impact mitochondrial dynamics, and modulate AKT signaling in osteoblasts exposed to high-glucose conditions. This study advances our understanding of the cellular mechanism of UCMA and suggests its potential use as a novel therapeutic agent for bone complications related to metabolic disorders.

Neuroprotective effects of resveratrol via anti-apoptosis on hypoxic-ischemic brain injury in neonatal rats (신생 백서의 저 산소 허혈 뇌손상에서 항세포사멸사를 통한 resveratrol의 신경보호 효과)

  • Shin, Jin Young;Seo, Min Ae;Choi, Eun Jin;Kim, Jin Kyung;Seo, Eok Su;Lee, Jun Hwa;Chung, Hai Lee;Kim, Woo Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.10
    • /
    • pp.1102-1111
    • /
    • 2008
  • Purpose : Resveratrol, extracted from red wine and grapes, has an anti-cancer effect, an antiinflammatory effect, and an antioxidative effect mainly in heart disease and also has neuroprotective effects in the adult animal model. No studies for neuroprotective effects during the neonatal periods have been reported. Therefore, we studied the neuroprotective effect of resveratrol on hypoxic-ischemic brain damage in neonatal rats via anti-apoptosis. Methods : Embryonic cortical neuronal cell culture of rat brain was performed using pregnant Sprague-Dawley (SD) rats at 18 days of gestation (E18) for the in vitro approach. We injured the cells with hypoxia and administered resveratrol (1, 10, and $30{\mu}g/mL$) to the cells at 30 minutes before hypoxic insults. In addition, unilateral carotid artery ligation with hypoxia was induced in 7-day-old neonatal rats for the in vivo approach. We injected resveratrol (30 mg/kg) intraperitoneally into animal models. Real-time PCR and Western blotting were performed to identify the neuroprotective effects of resveratrol through anti-apoptosis. Results : In the in vitro approach of hypoxia, the expression of Bax, caspase-3, and the ratio of Bax/Bcl-2, indicators of the level of apoptosis, were significantly increased in the hypoxia group compared to the normoxia group. In the case of the resveratrol-treated group, expression was significantly decreased compared to the hypoxia group. And the results in the in vivo approach were the same as in the in vitro approach. Conclusion : The present study demonstrates that resveratrol plays neuroprotective role in hypoxic-ischemic brain damage during neonatal periods through the mechanism of anti-apoptosis.