DOI QR코드

DOI QR Code

Neuroprotective effects of resveratrol via anti-apoptosis on hypoxic-ischemic brain injury in neonatal rats

신생 백서의 저 산소 허혈 뇌손상에서 항세포사멸사를 통한 resveratrol의 신경보호 효과

  • Shin, Jin Young (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Seo, Min Ae (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Choi, Eun Jin (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Kim, Jin Kyung (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Seo, Eok Su (Department of Ophthalmology, Dongguk University College of Medicine) ;
  • Lee, Jun Hwa (Department of Pediatrics, Masan Samsung Hospital, School of Medicine, Sungkyunkwan University) ;
  • Chung, Hai Lee (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Kim, Woo Taek (Department of Pediatrics, School of Medicine, Catholic University of Daegu)
  • 신진영 (대구가톨릭대학교 의과대학 소아과학교실) ;
  • 서민애 (대구가톨릭대학교 의과대학 소아과학교실) ;
  • 최은진 (대구가톨릭대학교 의과대학 소아과학교실) ;
  • 김진경 (대구가톨릭대학교 의과대학 소아과학교실) ;
  • 서억수 (동국대학교 의과대학 안과학교실) ;
  • 이준화 (성균관대학교 의과대학 마산삼성병원 소아청소년과) ;
  • 정혜리 (대구가톨릭대학교 의과대학 소아과학교실) ;
  • 김우택 (대구가톨릭대학교 의과대학 소아과학교실)
  • Received : 2008.06.02
  • Accepted : 2008.09.01
  • Published : 2008.10.15

Abstract

Purpose : Resveratrol, extracted from red wine and grapes, has an anti-cancer effect, an antiinflammatory effect, and an antioxidative effect mainly in heart disease and also has neuroprotective effects in the adult animal model. No studies for neuroprotective effects during the neonatal periods have been reported. Therefore, we studied the neuroprotective effect of resveratrol on hypoxic-ischemic brain damage in neonatal rats via anti-apoptosis. Methods : Embryonic cortical neuronal cell culture of rat brain was performed using pregnant Sprague-Dawley (SD) rats at 18 days of gestation (E18) for the in vitro approach. We injured the cells with hypoxia and administered resveratrol (1, 10, and $30{\mu}g/mL$) to the cells at 30 minutes before hypoxic insults. In addition, unilateral carotid artery ligation with hypoxia was induced in 7-day-old neonatal rats for the in vivo approach. We injected resveratrol (30 mg/kg) intraperitoneally into animal models. Real-time PCR and Western blotting were performed to identify the neuroprotective effects of resveratrol through anti-apoptosis. Results : In the in vitro approach of hypoxia, the expression of Bax, caspase-3, and the ratio of Bax/Bcl-2, indicators of the level of apoptosis, were significantly increased in the hypoxia group compared to the normoxia group. In the case of the resveratrol-treated group, expression was significantly decreased compared to the hypoxia group. And the results in the in vivo approach were the same as in the in vitro approach. Conclusion : The present study demonstrates that resveratrol plays neuroprotective role in hypoxic-ischemic brain damage during neonatal periods through the mechanism of anti-apoptosis.

목 적: Resveratrol은 주로 포도나무의 과실이나 잎 부위에서 추출되는 성분으로, 주로 심질환에서 암 예방 효과, 항염증 효과, 항산화 효과의 기능이 밝혀지고 있다. 최근 성인에 대한 신경보호 효과가 있는 것으로 알려졌지만. 신생아에서 연구는 아직까지 없다. 그래서 본 연구에서는 resveratrol이 신생 백서의 저 산소 허혈 뇌손상에서 신경보호 효과가 있는지를 알아보고자 실험하였다. 방 법: 재태기간 18일된 태아 백서의 대뇌피질 세포를 배양하여 1% $O_2$ 배양기에서 저 산소 상태로 뇌세포손상을 유도하여 저 산소군, 저 산소 30분 전 resveratrol 투여군 (1, 10, $30{\mu}g/mL$)으로 나누어 정상 산소군과 비교하였다. 또한, 동물 모델에서는 생후 7일된 백서의 좌측 총 경동맥을 결찰한 후 저 산소 (8% $O_2$) 상태로 2.5시간 노출시켜서 저 산소 허혈 뇌 손상을 유발하였고, 뇌손상 전후 30분에 resveratrol을 체중 kg당 30 mg을 복막내로 투여하였다. 세포사멸사의 관련을 알아보기 위해 Bcl-2, Bax, caspase-3 primer를 이용한 실시간 중합효소연쇄반응과 동일 항체를 이용한 Western blotting을 시행하였다. 결 과: 태아 백서 뇌세포 배양 실험에서 저 산소군의 경우 Bcl-2의 발현이 정상 산소군에 비해 감소하였고, Bax의 발현과 caspase-3의 발현, 그리고 Bax/Bcl-2의 비율은 증가하였다. Reaveratrol을 투여한 실험군의 경우에서는 Bcl-2 발현은 증가하였고, Bax의 발현과 caspase-3의 발현, Bax/Bcl-2의 비율은 저 산소군에 비하여 감소하는 결과를 보였다. 또한 이는 저 산소 허혈 뇌손상 동물 모델에서도 같은 결과를 보였다. 결론: 본 연구에서 resveratrol은 주산기 저 산소 허혈 뇌손상에서 세포사멸사 작용의 억제를 통하여 신경보호 역할을 하는 것을 알 수 있었다.

Keywords

Acknowledgement

Supported by : Catholic University of Daegu

References

  1. Vannucci RC, Connor JR, Mauger DT, Palmer C, Smith MB, Towfighi J, et al. Rat model of perinatal hypoxic-ischemic brain damage. J Neurosci Res 1999;55:158-63 https://doi.org/10.1002/(SICI)1097-4547(19990115)55:2<158::AID-JNR3>3.0.CO;2-1
  2. Weitzdoerfer R, Pollak A, Lubec B. Perinatal asphyxia in the rat has lifelong effects on morphology, cognitive functions, and behavior. Semin Perinatol 2004;28:249-56 https://doi.org/10.1053/j.semperi.2004.08.001
  3. Calvert JW, Zhang JH. Pathophysiology of an hypoxicischemic insult during the perinatal period. Neurol Res 2005;27:246-60 https://doi.org/10.1179/016164105X25216
  4. Virgili M, Contestabile A. Partial neuroprotection of in vivo excitotoxic brain damage by chronic administration of the red wine antioxidant agent, trans-resveratrol in rats. Neurosci Lett 2000;281:123-6 https://doi.org/10.1016/S0304-3940(00)00820-X
  5. Huang SS, Tsai MC, Chih CL, Hung LM, Tsai SK. Resveratrol reduction of infarct size in Long-Evans rats subjected to focal cerebral ischemia. Life Sci 2001;69:1057-65 https://doi.org/10.1016/S0024-3205(01)01195-X
  6. Kopp P. Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the 'French paradox' Eur J Endocrinol 1998;138:619-20 https://doi.org/10.1530/eje.0.1380619
  7. Giovannini L, Migliori M, Longoni BM, Das DK, Bertelli AA, Panichi V, et al. Resveratrol, a polyphenol found in wine, reduces ischemia reperfusion injury in rat kidneys. J Cardiovasc Pharmacol 2001;37:262-70 https://doi.org/10.1097/00005344-200103000-00004
  8. Ray PS, Maulik G, Cordis GA, Bertelli AA, Bertelli A, Das DK. The red wine antioxidant resveratrol protects isolated rat hearts from ischemia reperfusion injury. Free Radic Biol Med 1999;27:160-9 https://doi.org/10.1016/S0891-5849(99)00063-5
  9. Morin C, Zini R, Albengres E, Bertelli AA, Bertelli A, Tillement JP. Evidence for resveratrol-induced preservation of brain mitochondria functions after hypoxia-reoxygenation. Drugs Exp Clin Res 2003;29:227-33
  10. Brewer GJ. Isolation and culture of adult rat hippocampal neurons. J Neurosci Methods 1997;71:143-55 https://doi.org/10.1016/S0165-0270(96)00136-7
  11. Levine S. Anoxic-ischemic encephalopathy in rats. Am J Pathol 1960;36:1-17
  12. Rice JE 3rd, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 1981;9:131-41 https://doi.org/10.1002/ana.410090206
  13. Delivoria-Papadopoulos M, Mishra OP. Mechanisms of cerebral injury in perinatal asphyxia and strategies for prevention. J Pediatr 1998;132:s30-4 https://doi.org/10.1016/S0022-3476(98)70525-6
  14. Vannucci RC, Perlman JM. Interventions for perinatal hypoxic-ischemic encephalopathy. Pediatrics 1997;100:1004- 14 https://doi.org/10.1542/peds.100.6.1004
  15. Volpe JJ. Perinatal brain injury: from pathogenesis to neuroprotection. Ment Retard Dev Disabil Res Rev 2001;7:56-64 https://doi.org/10.1002/1098-2779(200102)7:1<56::AID-MRDD1008>3.0.CO;2-A
  16. Johnston BM, Mallard EC, Villiams CE, Gluckman PD. Insulin-like growth factor-1 is a potent neuronal rescue agent after hypoxic-ischemic injury in fetal lambs. J Clin Invest 1996;97: 300-8 https://doi.org/10.1172/JCI118416
  17. Northington FJ, Ferriero DM, Graham EM, Traystman RJ, Martin LJ. Early neurodegeneration after hypoxia-ischemia in neonatal rat is necrosis while delayed neuronal death is apoptosis. Neurobiol Dis 2001;8:207-19 https://doi.org/10.1006/nbdi.2000.0371
  18. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26:239-57 https://doi.org/10.1038/bjc.1972.33
  19. Yaoita H, Ogawa K, Maehara K, Maruyama Y. Apoptosis in relevant clinical situations: contribution of apoptosis in myocardial infarction. Cardiovasc Res 2000;45:630-41 https://doi.org/10.1016/S0008-6363(99)00349-1
  20. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, et al. Human ICE/CED-3 protease nomenclature Cell 1996;87:171 https://doi.org/10.1016/S0092-8674(00)81334-3
  21. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998;281:1312-6 https://doi.org/10.1126/science.281.5381.1312
  22. Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG. Specific proteolytic cleavage of poly (ADPribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 1993;53:3976-85
  23. Weitzdoerfer R, Pollak A, Lubec B. Perinatal asphyxia in the rat has lifelong effects on morphology, cognitive functions, and behavior. Semin Perinatol 2004;28:249-56 https://doi.org/10.1053/j.semperi.2004.08.001
  24. Arvin KL, Han BH, Du Y, Lin SZ, Paul SM, Holtzman DM. Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol 2002;52:54-61 https://doi.org/10.1002/ana.10242
  25. Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2001;2:589-98 https://doi.org/10.1038/35085008
  26. de Moissac D, Gurevich RM, Zheng H, Singal PK, Kirshenbaum LA. Caspase activation and mitochondrial cytochrome C release during hypoxia-mediated apoptosis of adult ventricular myocytes. J Mol Cell Cardiol 2000;32:53-63 https://doi.org/10.1006/jmcc.1999.1057
  27. Jung F, Weiland U, Johns RA, Ihling C, Dimmeler S. Chronic hypoxia induces apoptosis in cardiac myocytes: a possible role for Bcl-2-like proteins. Biochem Biophys Res Commun 2001;286:419-25 https://doi.org/10.1006/bbrc.2001.5406
  28. Dong JW, Zhu HF, Zhu WZ, Ding HL, Ma TM, Zhou ZN. Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis in cardiac myocytes via regulating Bcl-2/Bax expression. Cell Res 2003;13:385-91 https://doi.org/10.1038/sj.cr.7290184
  29. Tatsumi T, Shiraishi J, Keira N, Akashi K, Mano A, Yamanaka S, et al. Intracellular ATP is required for mitochondrial apoptotic pathways in isolated hypoxic rat cardiac myocytes. Cardiovasc Res 2003;59:428-40 https://doi.org/10.1016/S0008-6363(03)00391-2
  30. Shiraishi J, Tatsumi T, Keira N, Akashi K, Mano A, Yamanaka S, et al. Important role of energy-dependent mitochondrial pathways in cultured rat cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 2001;281:1637-47 https://doi.org/10.1152/ajpheart.2001.281.4.H1637
  31. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 1997;275:1129-32 https://doi.org/10.1126/science.275.5303.1129
  32. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 1997;275:1132-6 https://doi.org/10.1126/science.275.5303.1132
  33. Oltvai ZN, Korsmeyer SJ. Checkpoints of dueling dimers foil death wishes. Cell 1994;79:189-92 https://doi.org/10.1016/0092-8674(94)90188-0
  34. Misao J, Hayakawa Y, Ohno M, Kato S, Fujiwara T, Fujiwara H. Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation 1996;94:1506-12 https://doi.org/10.1161/01.CIR.94.7.1506
  35. Constant J. Alcohol, ischemic heart disease, and the French paradox. Coron Artery Dis 1997;8:645-9 https://doi.org/10.1097/00019501-199710000-00007

Cited by

  1. Ischemic insult induced apoptotic changes in PC12 cells: Protection by trans resveratrol vol.666, pp.1, 2011, https://doi.org/10.1016/j.ejphar.2011.05.015
  2. Neuroprotective Strategies in Neonatal Brain Injury vol.192, pp.None, 2008, https://doi.org/10.1016/j.jpeds.2017.08.031
  3. Resveratrol modulates the Akt/GSK-3β signaling pathway in a middle cerebral artery occlusion animal model vol.35, pp.None, 2008, https://doi.org/10.1186/s42826-019-0019-8