• Title/Summary/Keyword: 중력이상

Search Result 279, Processing Time 0.028 seconds

Subsurface Geological Structure of the Southwestern Part of the Ogcheon Zone by Gravity and Magnetic Surveys (중력 및 자력탐사에 의한 옥천대 남서부의 지하 지질구조)

  • 김성균;오진용;안건상;김용준
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.285-296
    • /
    • 1998
  • As a part of the study for understanding the deep geological structure of the Ogcheon Zone, both gravity and geomagnetic surveys are performed. A 70km survey line of which direction is nearly perpendicular to major faults in the southern tip of the Zone. The observed data are corrected and transformed into Bouguer and total magnetic intensity anomalies, respectively. Recent studies for petrology and geochemistry in the southwestern Ogcheon Zone in the vicinity of the survey line are reviewed for better interpretation. Both gravity and geomagnetic anomalies abruptly change around Janghung area, the southern boundary of the, Ogcheon Zone. This rapid increase of Bouguer anomaly around Janghung area can be explained by a deep seated normal fault with fairy large displacement between Precambrian gneisses and the denser intermediate plutonic rocks. It is believed that the fault acted an important role for the formation and evolution of the Ogcheon Zone. A pseudomagnetic intensity anomaly is calculated from the Bouguer anomaly assuming that the both anomalies are associated with the common source. From the origin of the survey line to the 50km point, the calculated anomaly coincides with observed magnetic anomaly. Whereas both anomalies show negative correlation in the outside 50km. From the residual Bouguer anomalies, the subterranean geological structure is provided through the iterative forward method. The initial model is obtained from informations about the surface geology as well as the results of the inverse method.

  • PDF

A Study on the Gravity Anomaly of Okcheon Group based on the Gravity Measurement around Chung Lake (충주호 주변의 중력 측정에 의한 옥천계의 중력이상 연구)

  • Park, Jong-Oh;Song, Moo-Young
    • Journal of the Korean earth science society
    • /
    • v.32 no.1
    • /
    • pp.12-20
    • /
    • 2011
  • The gravity measurement was conducted at 256 stations around Chungju Lake to study subsurface geological distributions and subterranean mass discontinuities by the results of gravity anomaly in Metamorphic Complex, Okcheon Group, Great Limestone Group of Choson Supergroup, and Cretaceous biotite granites. Okcheon Group showed a high Bouguer gravity anomaly while Great Limestone Group of Choson Supergroup relatively a low anomaly. The mean depth of subterranean mass discontinuities is about 2.0 km and downward along the Suchangri Formation from the Hwanggangri and Moonjuri formations. In general, Okcheon Group appeared shallower than the depth of Great Limestone Group of Choson Supergroup when imaging the subterranean mass discontinuities from the Bouguer gravity anomaly.

Determination of the Location of a Line Source using Gravity Gradient Tensor (중력 변화율 텐서를 이용한 선형 이상체 위치 결정)

  • Park, Changseok;Rim, Hyoungrea
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.263-268
    • /
    • 2017
  • The determination algorithm of the location of a line source with strike and dip using the gravity gradient tensor on a single profile is proposed. We already proposed the determination of strike and dip in the previous paper and then, now we improved the algorithm to locate a line source after determining strike and dip. The strike and dip of the line source can be determined by rotating the gravity gradient tensor matrix as reducing 2 independent components. Using the ratio of remaining 2 components, the location can be determined by the least square manner of the pointing vectors on each observation point. A synthetic model is tested for proving the usefulness of the proposed algorithm.

Enhanced Recovery of Gravity Fields from Dense Altimeter Data

  • Kim, Jeong-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.14 no.2
    • /
    • pp.127-139
    • /
    • 1996
  • This paper presents a procedure to recover sea surface heights (SSH) and free-air (FA) gravity anomalies from dense satellite altimeter SSH data with enhanced accuracies over the full spectrum of the gravity field. A wavenumber correlation filtering (WCF) of co-linear SSH tracks is developed for the coherent signals of sub-surface geological masses. Orbital cross-over adjustments with bias parameters are applied to the filtered SSH data, which are then separated into two groups of ascending and descending tracks and gridded with tensioned splines. A directional sensitive filter (DSF) is developed to reduce residual errors in the orbital adjustments that appear as track patterned SSH. Finally, FA gravity anomalies can be obtained by the application of a gradient filter on a high resolution estimate of geoid undulations after subtracting dynamic sea surface topography (DSST) from the SSH. These procedures are applied to the Geosat Geodetic Mission (GM) data of the southern oceans in a test area of ca. $900km\;\times{1,200}\;km$ to resolve geoid undulations and FA gravity anomalies to wavelengths of-10 km and larger. Comparisons with gravity data from ship surveys, predictions by least squares collocation (LSC), and 2 versions of NOAA's predictions using vertical deflections illustrate the performance of this procedure for recovering all elements of the gravity spectrum. Statistics on differences between precise ship data and predicted FA gravity anomalies show a mean of 0.1 mgal, an RMS of 3.5 mgal, maximum differences of 10. 2 mgal and -18.6 mgal, and a correlation coefficient of 0.993 over four straight ship tracks of ca. 1,600 km where gravity changes over 150 mgals.

  • PDF

Free-air anomaly from Airborne Gravity Surveying (항공중력측정에 의한 프리에어 이상 산출)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Lee, Bo-Mi;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.139-147
    • /
    • 2009
  • The gravity data collected and reserved in Korea is seriously biased in its distribution. That is, only the west-southern part of the peninsula including Chungcheong and Jeonla area has dense distribution while only a part is covered in Gyoungsang area. Especially, the low density of the gravity data in mountainous area basically limits the accuracy of the gravimetric geoid in Korea. As one of the solution to overcome the problem, an airborne gravity survey were conducted from Dec. 2008 $\sim$ Jan. 2009. In this study, free-air gravity anomaly derived from the airborne gravity data which has consistent quality are presented. The data processing for the airborne gravity is composed of several corrections of errors such as errors from gravity measurement, errors from flight dynamics, errors from GPS, and errors from time synchronization. We presented detailed explanations on the data processing with the final cross-over results. The free-air anomaly from airborne gravity finally shows the cross-over accuracy of 2.21mGal which reflects the precision of each track is 1.56mGal. It is expected that the result from this study will play a role as input data in precision geoid determination with ground and ship-borne gravity data after appropriate fusion process.

중력이상을 이용한 한반도 모호면 추출에 관한 연구

  • 김정우;조진동;김원균;민경덕;황재하;이윤수;박찬홍;황종선
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.258-264
    • /
    • 2003
  • 중력이상 및 수치고도모델을 이용하여 한반도 모호면 심도를 추출하였다 중력이상값은 인공위성고도레이더 관폭값을 주로 이용한 전지구 모델을 이용하여 데이터영역 뿐 만 아니라 주파수영역에서도 자료의 균질성을 확보하였다. 모호면 추출은 Kim et al. [2000a]에 의해 제안된 스펙트럼 대비법 및 후리에급수를 이용한 파워스펙트럼분석법을 이용하였다. 전자는 지각근형을 전제로, 지형에 의한 중력효과와 후리에어 중력이상을 파동수영역에서 대비하여 모호면의 심도를 계산하는 방법이고, 후자는 완전부우게 중력이상으로부터 푸리에변환을 이용하여 지하 밀도 변화층의 심도를 계산하는 방법이다. 이 두 모호면은 서로 0.53의 상관관계를 갖고 있으며, 이는 모호면 산출의 방법론적인 차이 및 계산상의 오차인 것으로 사료된다. 이렇게 두 가지 독립적인 방법으로 추출된 모호면을 하나로 통합하기 위한 한 방법으로, 두 모호면의 차이를 계산한 후, 이를 최소자승법을 이용, 두 모호면을 보정하였다. 결과적으로 한반도의 최종 모호면의 평균심도는 32.0km, 표준편차는 2.5km 이며, 최소, 최대 심도는 20.3, 36.6km으로 나타났다. 이 경우 지형에 의한 중력효과는 스펙트럼대비법에 의해 제거된 결과이나, 한반도의 지각이 완전한 지각판 내에 놓여 있어서 Airy-Heiskanin 지각균형설의 가정이 타당성이 있는가, 혹은 국부적인 응력장에 의해 한반도의 지각이 과연 얼마나 지지되고 있는가 하는 것에 대한 추가적인 연구가 필요하며, 이에 앞서, 일정한 밀도차를 갖는 연속적인 밀도변화층이 존재한다는 가정이 반드시 필요하다.에는 관련성을 갖고 있으며, 이는 유류 분해정도를 파악하는 지시자로써 특정 무기 오염물질을 이용할 수 있을 가능성이 있으므로 좀더 이들 관계성에 대한 연구가 진행될 필요성이 있다고 판단된다.고 과학적으로 분석할 수 있는 방법이 될 수 있을 것으로 기대된다. 의미를 되새기는 것으로 짧은 연구를 시작하겠다. 등은 활성 값이 70% 이상으로 퇴적물 독성이 상대적으로 낮았다. 이중나선 DNA 함량은 28.4 % - 49%로 대조군에 비해서 감소가 크다. 대부분의 정점이 대조군의 30% 내외로 정점 간의 차이는 크지는 않다. 그러나 다른 측정자료와 같이 정점 22에서 18%로 최소치를 나타내고, 정점 2, 12에서 20% 내외의 값을 보인다. 종합적으로 볼 때 오염물질의 유입이 크고, 광양제철 인근 정점 들이 모두 다른 정점에 비해서 낮아서, 퇴적물 독성이 높은 정점으로 조사되었다.hiwo의 광합성 능력은 낮은 농도들에서는 대조구와 유사하였으나, 5 $\mu\textrm{g}$/l의 높은 농도에서는 초기에 매우 낮은 광합성 능력을 보이다가 시간이 경과하면서 대조군보다 더 높은 경향을 나타냈다. 이러한 결과는 식물플랑크톤이 benso[a]pyrene의 낮은 농도에서 노출될 때는 이 물질을 탄소원으로 사용할 가능성이 있음을 시사한다. 본 연구의 결과들은 연안해역에 benso[a]pyrene과 같은 지속성 유기오염물질이 유입되었을 때 내정여부에 따라 식물플랑크톤 군집내 종 천이와 일차생산력에 크게 영향을 미칠 수 있음을 시사한다.TEX>5.2개)였으며, 등급별 회수율은 각각 GI(8.5%), GII

  • PDF

Gravity Anomaly around Boam Deposit, Uljin: Implications on Economic Geology (울진 보암광상 일대 중력 이상: 광상학적 함의)

  • Oh, Il-Hwan;Heo, Chul-Ho;Shin, Young-Hong
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.521-529
    • /
    • 2022
  • Gravity exploration was conducted to determine the distribution of igneous complex related to lithium pegmatite in the Boam deposit of Uljin, Gyeongsangbuk-do, and the spatial relationship with the regional geology and ore bodies were studied. The gravity exploration result shows that the Boam deposit area is characterized by relatively low gravity anomaly that surrounds the deposit. The Boam deposit is located near the southwest-northeast directional boundary of gravity anomalies where igneous complex (granite gneiss) contacts with the Yuli and Wonnam groups in the southeast, Janggun limestone layers in the east-west direction, and Dongsugok metasedimentary rocks. While the western boundary in the southwest-northeast direction is relatively clear, there may also be unknown igneous complex that are not exposed on the surface at the eastern and southern boundaries because a relatively low gravity anomaly surrounds the deposit. The distribution characteristics of these hidden igneous complex will be used as useful data for predicting the distribution of the lithium pegmatite in the future.

External Gravity Field in the Korean Peninsula Area (한반도 지역에서의 상층중력장)

  • Jung, Ae Young;Choi, Kwang-Sun;Lee, Young-Cheol;Lee, Jung Mo
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.451-465
    • /
    • 2015
  • The free-air anomalies are computed using a data set from various types of gravity measurements in the Korean Peninsula area. The gravity values extracted from the Earth Gravitational Model 2008 are used in the surrounding region. The upward continuation technique suggested by Dragomir is used in the computation of the external free-air anomalies at various altitudes. The integration radius 10 times the altitude is used in order to keep the accuracy of results and computational resources. The direct geodesic formula developed by Bowring is employed in integration. At the 1-km altitude, the free-air anomalies vary from -41.315 to 189.327 mgal with the standard deviation of 22.612 mgal. At the 3-km altitude, they vary from -36.478 to 156.209 mgal with the standard deviation of 20.641 mgal. At the 1,000-km altitude, they vary from 3.170 to 5.864 mgal with the standard deviation of 0.670 mgal. The predicted free-air anomalies at 3-km altitude are compared to the published free-air anomalies reduced from the airborne gravity measurements at the same altitude. The rms difference is 3.88 mgal. Considering the reported 2.21-mgal airborne gravity cross-over accuracy, this rms difference is not serious. Possible causes in the difference appear to be external free-air anomaly simulation errors in this work and/or the gravity reduction errors of the other. The external gravity field is predicted by adding the external free-air anomaly to the normal gravity computed using the closed form formula for the gravity above and below the surface of the ellipsoid. The predicted external gravity field in this work is expected to reasonably present the real external gravity field. This work seems to be the first structured research on the external free-air anomaly in the Korean Peninsula area, and the external gravity field can be used to improve the accuracy of the inertial navigation system.

Analysis of Global Gravitational Models based on measured gravity data (육상 중력자료 기반의 전 지구 중력장 모델 분석)

  • Choi, Kwang-Sun;Lee, Young-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1833-1839
    • /
    • 2011
  • In this study, Global Gravitational Model EGM2008, EGM96 and 16,786 gravity points measured on land were compared and analyzed. On the assumption that land gravity data is most accurate, the correlation coefficient, differences, MSE and difference variance along the height were computed between land gravity data and EGM2008, EG96. The correlation coefficient, land gravity data and EGM2008, was computed most largely with 0.824 and the correlation coefficient with EGM96 was computed with 0.538. The standard deviation of differences between land gravity and EGM2008, EGM96 were 13.196 magl, 18.685 mgal respectively. Also the difference variance scope of EGM2008 was smaller than EGM96. There was no large variance of free-air anomaly differences between land gravity data and EGM2008 along the height however free-air anomaly differences with EGM96 varied along the height changes. Consequently EGM2008 nicely expresses Korea gravity field more than EGM96.

The Expressions of Vector Gravity and Gravity Gradient Tensor due to an Elliptical Cylinder (타원 기둥에 의한 벡터 중력 및 중력 변화율 텐서 반응식)

  • Hyoungrea Rim
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • This study derives the expressions of vector gravity and gravity gradient tensor due to an elliptical cylinder. The vector gravity for an arbitrary three-dimensional (3D) body is obtained by differentiating the gravitational potential, including the triple integral, according to the shape of the body in each axis direction. The vector gravity of the 3D body with axial symmetry is integrated along the axial direction and reduced to a double integral. The complex Green's theorem using complex conjugates subsequently converts the double integral into a one-dimensional (1D) closed-line integral. Finally, the vector gravity due to the elliptical cylinder is derived using 1D numerical integration by parameterizing a boundary of the elliptical cross-section as a closed line. Similarly, the gravity gradient tensor due to the elliptical cylinder is second-order differentiated from the gravitational potential, including the triple integral, and integrated along the vertical axis direction reducing it to a double integral. Consequently, all the components of the gravity gradient tensor due to an elliptical cylinder are derived using complex Green's theorem as used in the case of vector gravity.