• Title/Summary/Keyword: 중력보상기

Search Result 19, Processing Time 0.03 seconds

Study on Robot Manipulator applying the Gravity Compensator (중력 보상기를 적용한 로봇 매니퓰레이터 연구)

  • Choi, Hyeung-Sik;Hur, Jae-Gwan;Seo, Hae-Yong;Hong, Sung-Yul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.267-274
    • /
    • 2010
  • In this paper, the structure of a gravity compensator was studied, and the 6-axis robot manipulator which is newly developed by applying the gravity compensator is presented to improve the torque performance of the robot joint. The kinematics analysis on the robot was presented. Also, a simulation of the performance of the joint actuator of robot adopting the gravity compensator was presented by applying various springs. According to the simulation results, it was validated that the payload effect on the robot joint actuator adopting the gravity compensator is reduced in proportion to the spring intensity of the gravity compensator.

Experimental Study of the Robot Arm Applying the Gravity Compensator (중력보상기를 적용한 로봇 팔의 실험적 연구)

  • Choi, Hyeung-Sik;Seo, Hae-Yong;Uhm, Tai-Woong;Yoon, Jong-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.60-67
    • /
    • 2011
  • In this paper, the structure of a gravity compensator(GC) was studied, and the 6-axis robot manipulator which is newly developed by applying the GC is presented to improve the torque performance and repeatability error of the robot joint. The kinematics analysis on the robot was presented. Also, experiments of the performance of the joint actuator of robot adopting the gravity compensator were presented by the GC to $1^{st}$ and $2^{nd}$ joints of the robot arm. According to the experiment results, it was validated that the position errors and load torque of the robot joint actuator adopting the GC are reduced significantly.

Structure Analysis of an Exoskeleton with a Torsion Bar Gravity Compensator (비틈 봉 중력보상기를 적용한 외력증강기 구조해석)

  • Choi, Hyeong-Sik;Lee, Dong-Jun;Jo, Jong-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.467-475
    • /
    • 2012
  • In this paper, a technical method of reducing torque load of exoskeleton device, with using of a gravity compensator based on a torsion bar, for human leg joints, is proposed. Design and structure analyses and also performance test were performed to estimate and to measure the characteristics of the torsion bar. On the basis of design and structure analysis, a new light and compact exoskeleton device has been developed. For the purpose of lightening and optimizing thickness of the links, FEM analysis has been performed.

Manipulator Equipped with Counterbalance Mechanism Based on Gear Unit (기어유닛 기반 중력보상장치를 갖는 머니퓰레이터)

  • Kang, In Ho;Kim, Hwi Su;Song, Jae-Bok;Lee, Hyun Soo;Chang, In Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.289-294
    • /
    • 2014
  • Industrial manipulators are usually heavy given the payloads they carry. Therefore, they require high-capacity servomotors and speed reducers, which leads to high costs. However, if manipulator weight could be compensated for using a counterbalance mechanism, the motors' and speed reducers' capacities could be minimized substantially. However, it is usually difficult to assure durability and reliability with the conventional wire-based counterbalance mechanism. Therefore, a more robust gear- and roller-based counterbalance mechanism is proposed in this study. A manipulator was developed using this mechanism; this manipulator maintains its performance even when using motors and reducers of lower capacities. The results of various simulations and experiments verified that the proposed mechanism provides the torque required to compensate for gravitational torque in any configuration and minimizes the torque required for supporting a large payload.

A Study on a Gravity Compensator for the Robot Arm (로봇팔을 위한 중력보상기 연구)

  • Choi, Hyeung-Sik;Kim, Dong-Ho;Her, Jea-Gwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.226-232
    • /
    • 2009
  • In this paper, a design and analysis of a gravity compensator which is a new device to reduce the joint torque of robots caused due to gravity is presented. Joints of all robots are loaded by large torques due to gravity. By applying the gravity compensator to the robot joints, the load torques applied to the robot joints are reduced by the repulsive force of the gravity compensator such that the size of the joint actuation motor can be reduced. In this paper, the structure and force relation of the gravity compensator are analyzed. The superior performance of the proposed gravity compensator is verified through experiments which measure the joint motor current caused by the load applied to the robot link.

A study on the Biped Walking Robot applying a Gravity Compensator (중력보상기를 적용한 이족보행로봇 연구)

  • Choi, Hyeung-Sik;Na, Won-Hyun;Kim, Dong-Ho;Chu, U-Heon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.55-62
    • /
    • 2010
  • In this paper, the structure of a new gravity compensator was studied, and the biped walking robot applying a gravity compensator was presented to improve the performance of the robot. The robot had 13 degree of freedom and is driven by the joint actuator with the gravity compensator. Each leg of the robot is composed of six joints three joints at the hip, a joint at the knee, and two joints at the ankle. The leg of the robot was designed to support 74kg weight including 30kg payload thanks to the gravity compensator. The performance of the robot was presented by reducing the payload applied to the leg joint of the robot thanks to the gravity compensator.

Approximate Friction and Gravity Compensation in Haptic Laparoscopic Surgery Simulator (햅틱 복강경 수술 시뮬레이터의 마찰력 및 중력 보상)

  • Kim, Sang-Hyun;Lee, Chang-Gyu;Kim, Ji-Suk;Ryu, Je-Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.883-888
    • /
    • 2011
  • Laparoscopic surgery is being used in various surgical fields because it minimizes scarring. Laparoscopic operations require practical hand skills, so surgeons train on animals and via surgery training tool sets. However, these tool sets do not give the surgeon the sensation of touching real organs. A recently developed laparoscope simulator has a high friction force along the translational axis and a high gravity force along the pitch axis, and therefore it does not permit the operator to control his or her hands delecately. In the paper, the friction force along the axes is auumed to depend on the veolcity, and the gravity force on the angle and distance. We develop a compensation model that combines the gravity and friction force models.

A Study on Speed Error of Disk Type SPMSM with Eccentric Load (편심 부하를 가지는 Disk Type SPMSM에서 속도오차에 관한 연구)

  • Lee, K.W.;Kim, Y.S.;Lee, H.J.;Ryoo, S.R.;Kwon, Y.A.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.109-111
    • /
    • 2002
  • 디스크 형의 회전자를 가지고 있는 영구자석 표면 부착형 동기 전동기에서 회전자가 중력 방향에 직각으로 서있고, 디스크 상에 부하가 존재하는 경우 디스크의 불균일한 질량 분포에 의해 편심이 발생한다. 편심 부하는 합성 무게 중심이 반중력 방향으로 향하면 전동기의 속도는 감소하고, 중력 방향이면 속도가 증가하는 정현적인 부하 토크로 작용하여 정현적 인 속도 오차를 발생시킨다. 이 속도 오차를 감소시키기 위해 q-축 전류와 측정된 속도를 입력으로 가지는 부하 토크 관측기를 설계하여 생성된 보상전류를 피드 포워드 방식으로 q-축 지령 전류에 보상하는 방식을 사용한다. 본 연구에서는 부하 토크 관측기를 사용하는 방식에서 발생하는 속도오차에 관하여 분석하였다.

  • PDF

Study of a Gravity Compensator for the Lower Body (중력보상기 기반의 하지용 외골격 장치 설계 연구)

  • Choi, Hyeung-Sik;Kim, Dong-Ho;Jeon, Ji-Kwang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.455-462
    • /
    • 2011
  • This paper is about the design of a new gravity compensator for the lower body exo-skeleton device. The exo-skeleton devices is for increasing the torque of the human body joint for the purpose of helping the disabled, workers in the industry, and military soldiers. So far, most of studied exo-skeleton devices are actuated by the motors, but motors are limited in energy such that a short durability is always a big problem. In this paper, a new gravity compensator is proposed to reduce the torque load applied to human body joints due to gravity. The gravity compensator is designed using a tortional bar spring, and its structure and characteristics are studied through the test and computer simulation. A design concept on the exo-skeleton device using the gravity compensator is presented. An analysis and computer simulation on the torque reduction of the proposed exo-skeleton device that applies and non-applies the gravity compensator are performed.

동적 보상기를 갖는 가벼운 유연성 매니퓰레이터의 적응 제어

  • 김승록;박종국
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.8
    • /
    • pp.708-714
    • /
    • 1990
  • This paper has proposed a self-tuning controller for tracking reference trajectory by measuring End-point of arm on robot manipulator whose link is light and flexibls, and proved the perforformance of the algorithm proposed through the computer simulation. As an object of control, a flexible robot manipulator with two-links was selected. As for structure of model, it utilized an assume mode shape method with include travity force and derived a dynaics equation by adapting two kinds of vibration mode of each.

  • PDF