• Title/Summary/Keyword: 중공형

Search Result 225, Processing Time 0.025 seconds

Omni-directional laser using hollow tube prism (360도 전방향 발산각도를 가지는 중공형 원통 프리즘)

  • Choi, Jin;Park, Young-Ho;Gong, Hong-Jin
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.126-127
    • /
    • 2003
  • 1차원의 레이저빔을 공간내의 전방향으로 퍼트리는 새로운 광학기기인 중공형 원통 프리즘에 대해 보고하고자 한다. 중공형 원통 프리즘은 아래의 그림 1과 같이 속이 빈 유리튜브의 구조를 가진다. 레이저광이 유리관의 표면에 입사되면 반사 및 굴절의 현상이 나타난다. 일반적으로 유리는 굴절률이 공기보다 높아 내부반사가 여러 번 일어나므로 유리관 표면에 입사된 레이저빔은 유리관의 곡면을 따라 진행하면서 반사 또는 굴절의 과정을 반복적으로 거치게 된다. (중략)

  • PDF

Effects of Eluting Temperature and Time on Hollow Rate of Nylon High Hollow (용출온도와 시간이 Nylon 중공사의 중공율에 미치는 영향)

  • Kim, Sang-Ryong;Kim, Seung-Jin;Jo, Jin-Hwang;Lee, Jong-U;Jo, Dae-Hyeon
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.10a
    • /
    • pp.55-56
    • /
    • 2008
  • 본 연구에서는 국내 기업에서 개발된 Nyoln P 입자첨가 마스터배치를 이용하여 방사공정에서의 방사온도와 Nylon sheath와 PET core 비율을 변화시켜 용출형 Nylon 중공사를 방사하여 용출온도, 용출시간 등 용출조건의 변화에 따라 Nylon 중공사의 중공율에 미치는 영향에 대해 분석하였고, 또한 용출된 상태를 보기 위해 용출형 나일론 중공사의 SEM 사진을 측정하였다. 이러한 결과를 토대로 개발된 나일론 용출형 중공사를 이용하여 고부가가치의 나일론 용출형 중공사 제품의 상품화 기술을 개발하는데 도움을 주는데 본 연구의 목적이 있다.

  • PDF

One-Way Shear Strength of Donut Type Biaxial Hollow Slab Considered Hollow Shapes and Materials (중공형상 및 재료의 영향을 고려한 도넛형 이방향 중공슬래브의 일방향 전단강도)

  • Chung, Joo-Hong;Lee, Seung-Chang;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.391-398
    • /
    • 2012
  • This paper presents the shear capacities of biaxial hollow slab with donut type hollow sphere. Recently, various types of slab systems which can reduce self-weight of slabs have been studied for increasing constructions of taller and larger building structures. A biaxial hollow slab system is widely known as one of the effective slab system, which can reduce self-weight of slab. According to previous studies, the hollow slab has low shear strength, compared to solid slab. Also, the shear capacities of biaxial hollow slab are influenced by the shapes and materials of hollow spheres. However, the current code does not provide a clear computation method for the shear strength of hollow slab. To verify the shear capacities of this hollow slab, one-way shear tests were performed. Four test specimens were used for test parameters. One was conventional RC slab and others were hollow slabs. The test parameters included two different shapes and materials of plastic balls. The shape parameters were donut and non-donut forms and the material parameters were general plastic and glass fiber plastic. The results showed that the shear strengths varied depending on hollow shapes and materials used in the slab.

A Development of Servo Driver for Implementation of Hollow type Joint Module (중공형 관절 구현을 위한 서보 드라이버 개발)

  • Moon, Yong-Sun;Roh, Sang-Hyun;Cho, Kwang-Hoon;Bae, Young-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.843-847
    • /
    • 2010
  • Recently, one of the most interesting issue in the intelligent robot and the industrial robot area is the design and an implementation of servo driver module based on motion network for hollow type joint module of all-in-one structure. In this paper, we designed and implemented for hollow type driver, and also verified the performance of the developed module through the experiment.

Analysis on Flexural Behavior of Hollow Prestressed Concrete Filled Steel Tube Piles (프리스트레스를 받는 중공형 콘크리트 충전 강관말뚝의 휨거동 해석)

  • Chung, Heung-Jin;Paik, Kyu-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.133-140
    • /
    • 2018
  • A nonlinear finite element analysis was conducted in order to examine the moment capacity and flexural behaviour of hollow prestressed concrete filled steel tube(HCFT) piles which compose hollow PHC piles inside thin wall steel tubes. The parameters investigated in this study were various contact conditions between concrete and steel tube, thickness of concrete tube and various PC strands. A simple method is proposed to determine the ultimate flexural strength based on plastic stress distribution method. In order to verify the proposed method, calculated moment capacity of various HCFT piles are compared with the experiment and numerical analysis results.

Syntheses of Mesoporous Silica Hollow Spheres Using Polystyrene Template (폴리스티렌 주형 중공형 중간세공 나노 입자의 합성)

  • Chu, Sang-Wook;Sung, A-Reum;Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.13 no.4
    • /
    • pp.151-155
    • /
    • 2012
  • In the present study, we synthesized mesoporous silica hollow spheres with different wall thickness using polystyrene (PS) spheres as a structure template, tetraethoxysilane (TEOS) as a silica source, cetyltrimethylammonium bromide (CTAB) as a template. Particle size and dispersion of PS spheres were strongly depended on the concentration of surfactant in the aqueous solutions. The size of PS spheres was increased with decreasing concentration of surfactants. Dispersion of PS particle was improved when the surfactant concentration was lower than 0.5 g of surfactant.

Flexural Capacities of Hollow slab with Donut type Hollow Sphere (도넛형 중공형성체를 사용한 중공슬래브의 휨성능 평가)

  • Kim, Byoung-Hoon;Chung, Joo-Hong;Choi, Hyun-Ki;Lee, Seung-Chang;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.31-32
    • /
    • 2010
  • This paper presents the flexural capacities of one-way hollow slab with donut type hollow sphere. According to analytical studies, the hollow slab with donut type hollow sphere had good flexural capacities such as strength, stiffness and deflection. To verify the flexural capacities of this hollow slab, flexural tests were performed on the one-way hollow slabs.

  • PDF

Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging (자유단조공법을 통한 중공형 메인샤프트 제조공정에 관한 연구)

  • Kwon, Yong Chul;Kang, Jong Hun;Kim, Sang Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.221-227
    • /
    • 2016
  • The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts.

An Experimental Study for Bond Characteristics of Deformed Bar Embedded in Donut Type Biaxial Hollow Slab (도넛형 이방향 중공슬래브의 부착특성에 관한 실험적 연구)

  • Chung, Joo-Hong;Kang, Sung-Hoon;Lee, Seung-Chang;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.155-163
    • /
    • 2013
  • This study investigated the bond characteristics of embedded deformed steel bar in donut type biaxial hollow slabs. The donut type hollow sphere make concrete inner cover formed between steel bar and hollow sphere due to the hollow shape and arrangement. Generally, inner cover was thinner than outer cover, and some part of donut type biaxial hollow slab has smaller inner cover thickness than $2.5d_b$. It was affected to the bond condition of deformed bar. Furthermore, inner cover thickness changes along the longitudinal deformed bar due to hollow shape. Therefore, donut type hollow slab was divided 3 regions according to the hollow shape such as insufficient region, transition region, sufficient region. Pull-out test were performed to find out the effect of bond condition by the region. Main parameters are inner cover thickness, embedded length and bond location. Bond characteristics of donut type biaxial hollow slab were confirmed through comparison of bond stress-slip relationship, maximum bond strength and bond stress distribution of each regions. And the calculation method of bond strength of donut type biaxial hollow slab was suggested based on the test results.

Application of Hierarchical ZnCo2O4 Hollow Nanofibers for Anode Materials in Lithium-ion Batteries (계층적 구조를 갖는 중공형 ZnCo2O4 나노 섬유의 리튬이온배터리 음극소재 적용)

  • Jeong, Sun Young;Cho, Jung Sang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.559-564
    • /
    • 2019
  • Hierarchical $ZnCo_2O_4$ hollow nanofibers were prepared by electrospinning and subsequent heat-treatment process. The spinning solution containing polystyrene (PS) nanobeads was electrospun to nanofibers. During heat-treatment process, PS nanobeads in the composite were decomposed and therefore generated numerous pores uniformly in the structure, which facilitated the heat transfer and gas penetration into the structure. The resulting hierarchical $ZnCo_2O_4$ hollow nanofibers were applied as an anode material for lithium-ion batteries. The discharge capacity of the nanofibers was $815mA\;h\;g^{-1}$ ($646mA\;h\;cm^{-3}$) after the 300th cycle at a high current density of $1.0A\;g^{-1}$. However, $ZnCo_2O_4$ nanopowders showed the discharge capacity of $487mA\;h\;g^{-1}$ ($450mA\;h\;cm^{-3}$) after 300th cycle. The excellent lithium ion storage property of the hierarchical $ZnCo_2O_4$ hollow nanofibers was attributed to the synergetic effects of the hollow nanofiber structure and the $ZnCo_2O_4$ nanocrystals composing the shell. The hierarchical hollow nanofiber structure introduced in this study can be extended to various metal oxides for various applications, including energy storage.