Chae, Dongseok;Park, Jae-Hyeon;Kim, Young Do;Kim, Myunghak;Lee, Mansoo
Journal of the Korean GEO-environmental Society
/
v.10
no.5
/
pp.5-9
/
2009
In this experiment, the cutter head was designed as the down-scaled shape from the cutter head of the Asan-3 of Hyundai Construction Company. The dredging simulation instrument was installed in the experiment water tank which has the dimension of $4.2m(L){\times}2.2m(W){\times}1.5m(H)$. The speed of all components were controlled manually through the hydraulic tool and motors to find the effective desilting condition. As the results, the experiment was conducted to find the optimate dredging cutter head operation rate. To compare the factors which effect on the dredging effectiveness, the dimensionless dredging volume ratio was introduced and it can be found the best effectiveness at 2.0 m/s suction speed, 8 cm dredging depth and 4~4.5 dimensionless dredging volume ratio. Therefore, in order to take the best effectiveness these 3 components factors should be adequately considered.
The pattern of headward erosion at tributary and the separation zone formation in a loosed bed at confluence according to the confluence angle, discharge ratio, and dredging depth ratio have been analyzed. The separation zone is defined the inside of zero velocity boundary at downstream of confluence. The limit of separation zone occurrence is presented with dredging depth ratio. The propagation length of knickpoint increases as the confluence angle, discharge ratio, and dredging depth ratio increase in general and its regression equation has been suggested. The length and width ratios of separation zone in a loosed bed increase as discharge ratio and confluence angle increase as well as in a fixed bed. The length ratio decreases and the width ratio increases as dredging depth ratio increases results in great increase of shape factor and backwater rise by the conveyance reduction at confluence. The regression equation of shape factor with confluence angle, discharge ratio, and dredging depth ratio has been suggested.
In this study, the hydraulic experiments were conducted for the dredging efficiency of the cutter head type, which includes the open type and the close type cutter head. The dredging experimental instrument was installed in the large water tank which has the dimension of $4.9m(L){\times}2.2m(W){\times}1.5m(H)$. The dredging experiments were performed for the various conditions of dredging depth, rotating speed, and suction speed of the cutter head. As the results, the dredging efficiency of the close-type cutter head is much higher than that of the open-type cutter head. The dredging efficiency of the same cutter head type was mainly influenced by the rotating speed of cutter head. Also the adequate suction speed of the cutter head is needed for more effective dredging.
Proceedings of the Korea Water Resources Association Conference
/
2008.05a
/
pp.619-623
/
2008
본 연구에서는 1차원 수치모형을 개발하여 하천준설 인한 교란하천의 적응과정을 파악하였다. 본 1차원 수치모형의 특성은 하천의 혼합사와 부유사의 거동을 모의할 수 있다. 하천준설 규모의 변화에 따른 하상변동과 하천의 적응과정을 파악하기 위하여, 하천준설의 채취장 길이는 일정하고, 채취 깊이가 변하는 경우와 채취 깊이가 일정하고 채취장의 길이가 변하는 경우에 대하여 검토하였으며, 그 결과는 다음과 같다. 채취장을 중심으로 상류에는 하상이 저하되어 상류로 전파되는 것을 보여주고 있다. 채굴장 직하류에서는 하상이 저하되고 있고, 하류에는 다시 하상이 상승하는 특성을 보여주고 있다. 채취장에서 하상의 상승은 초기에는 급격하게 진행되고 있으나, 시간이 지나면서 그 증가율은 감소하고 있다. 채치장 상류에서는 하상저하가 초기에 급격하게 진행되고 있다. 그러나 시간이 지나면서 느리게 진행되고 있고, 그 영향은 상류로 먼 거리까지 영향을 미치는 것을 보여주고 있다. 하류에서 하상저하는 상류로 그 영향이 적다. 채취장을 중심으로 수심의 변화는 시간의 증가에 따라 하류에는 수심이 증가하고 있으며, 상류에서는 수심이 감소하고 있다. 시간에 따라 수심의 변화율이 감소되고 있는 것은 교란된 하천이 적응해 가면서 평형상태에 도달해 가는 과정에서 하상변화가 감소되기 때문으로 판단된다. 채취장의 채취 깊이가 깊을수록 세굴심의 하류도 이동속도는 작아지며, 이것은 채취장은 채취규모가 커지면 하천의 교란이 있은 후에 적응하는 기간이 길어지는 것을 의미한다. 무차원 하상고는 채취장의 채굴심도가 작을수록 커지며, 시간이 증가함에 따라 증가하는 것을 보여주고 있다. 채취장의 채취장 길이가 길수록 하류로 이동하는 속도는 작아지며, 이것은 채취장의 채취규모가 커지면 하천의 교란이 있은 후에 적응하는 기간이 길어지는 것을 보여주었다. 무차원 하상고는 채취장의 채굴장의 길이가 짧을수록 커지며, 시간이 증가함에 따라 증가하는 것을 보여주고 있다.
Journal of Korean Society of Environmental Engineers
/
v.32
no.1
/
pp.53-60
/
2010
In the present study, experiments have been performed to investigate the possibility of removing Cochlodinium polykrikoides using the dredged sediment from a coastal fishery and then to derive the optimal conditions; the amount and particle size of dredged sediment besprinkled into water, the thermal treatment, the types and amounts of additives, and the depth profile of Cochlodinium polykrikoides. Results showed that the optimal amount of dredged sediment besprinkled into water was 6~10 g/L, and the removal efficiency of Cochlodinium polykrikoides after the reaction time for 60 min was 73~93%. Note that, in the real sea water, it is necessary to besprinkle 6~10 $kg/m^3$ of dry dredged sediment on a unit area (1 $m^2$). With decreasing particle size, Cochlodinium polykrikoides could be more efficiently removed. The removal efficiency was 93% with the dredged sediment smaller than 100 ${\mu}m$, whereas it was 51% with that of 100 ${\mu}m$${\mu}m$. Since most of dredged sediment (over 90%) was smaller than 100 ${\mu}m$, high efficiency could be obtained by besprinkling only the dredged sediment without pre-treatment. CaO was found to be an effective additive in promoting the removal efficiency (up to 99%). The optimal amount of additive was 5~10%, however, it was necessary to use as small amount of an additive as possible in order to avoid the sharp increase in pH. The removal efficiency increased with increasing depth profile of Cochlodinium polykrikoides. The removal efficiency was 83% at 5 cm depth, whereas it was 93% at 50 cm depth. In the sea water, red tide occurred within 3 m depth, and furthermore most Cochlodinium polykrikoides existed within 1 m depth. It was, therefore, expected that higher removal efficiency of Cochlodinium polykrikoides could be obtained when the dredged sediment was besprinkled into the sea water. The removal efficiency of Cochlodinium polykrikoides was up to 93% when the dredged sediment (<100 ${\mu}m$) was besprinkled into water at the ratio of 10 g/L. This result was comparable to that obtained with loess (90~97%). All the results in the present study indicated that the dredged sediment from a coastal fishery could be successfully used as a substitute of loess for removing the red tide alga.
Experimental study of sedimentation and self-weight consolidation has been primary research area in dredged soil. However, good quality of the dredged soil and minimum water pollution caused by the pumping of reclaimed soil require intensive study of the flow characteristics of dredged material due to dumping. In this study, continuity and the equilibrium equations for mass flow assuming single phase was derived to simulate mass flow in dredged containment area. To optimize computation and modeling time for three dimensional geometry and boundary conditions, depth integration is applied to governing equations to consider three dimensional topography of the site. Petrov-Galerkin formulation is applied in spatial discretization of governing equations. Generalized trapezoidal rule is used for time integration, and Newton iteration process approximated the solution. DG and CDG technique were used for weighting matrix in discontinuous test function in dredged flow analysis, and numerical stability was evaluated by performed a square slump simulation. A comparative analysis for numerical methods showed that DG method applied to SU / PG formulation gives minimal pseudo oscillation and reliable numerical results.
In this study, grain size distribution of dredged soil and suspended solid distribution of supernatant in containment area were measured and compared with design prediction for suitability evaluation on prediction of suspended solid concentration of supernatant in conventional design of containment area. In addition to that, relationship were also analyzed between current velocity and suspended solid concentration of supernatant. Evaluation results show a relatively good agreement between field measurement and design prediction. On contrast, field measurement and design prediction show a quite different value each other in the early stage of dredging or at a point that current velocity increases. It is believed that this is due to that conventional design method of containment area does not account for ponding depth and current velocity which change sensitively with dredging period. Since current velocity and distribution of suspended solid concentration measured simultaneously show a similar trend, it is observed that there exists a close relationship between current velocity and distribution of suspended solid concentration. Therefore, a new design method for containment area, which can consider sedimentation of suspended solid that changes with interface height of dredged soil, ponding depth, current speed of supernatant, is necessary in order to predict the situation change of containment area more precisely.
This study examined pollution level of sediment in Sookchun lake, and studied dredging validity by examining phosphorous release characteristics on surface polluted soil. Total phosphorous, the principal cause of algal blooms, exceeded dredging assessment standards regarding Daechung lake (1.5 mg/g) at all points. Also at all points, total nitrogen exceeded the dredging assessment standard regarding Paldang Lake (1.1 mg/g), but fell short of the standard regarding Daechung lake (3.0 mg/g). Dredging zone was suggested in this study is Chuso water body (WS-6~WS-12) in Sookchun lake. In relation to sediment pollution levels measured at different depths, LOI tended to decrease as it became deeper. The concentrations of T-N varied depending upon the depth as well as points, but no regular pattern was observed. The depth and site did not significantly influence T-P. From the results of phosphorous release tests, it was shown that total phosphorous release flux was calculated to be $7.2{\sim}15.4mg/m^2/d$ for anaerobic condition, $0.5{\sim}2.0mg/m^2/d$ for aerobic condition and $2.0{\sim}4.1mg/m^2/d$ for facultative condition. Release flux and T-P concentration of surface sediments had positive correlation ($R^2$ 0.7871). And The corelation between release flux and DO condition in reactor had strong negative correlation ($R^2$ 0.8824).
The diverse patterns of separation zone according to the marked bed discordance by dredging at confluence in addition to the confluence angle of tributary and discharge ratio between tributary and main channels have been analyzed by CCHE2D model simulation. The separation zone is defined by inside of zero velocity boundary at down-stream of confluence. The separation zone dose not formed at the $30^{\circ}$ of confluence angle of tributary. The size of separation zone increases as the discharge ratio and confluence angle increase in general. The separation zone decreases as the dredging depth increases which shows the relative momentum reduction compared by the flow volume increasing by dredging at confluence. The contraction factor with the variation of confluence angle and discharge ratio has been investigated and confirmed the corresponding conveyance decreasing results in backwater effect. The regression equation of shape factor with confluence angle and discharge and dredging depth ratios has been suggested.
For optimum scale design of containment area, a series of laboratory tests using column were performed in this study as followings; sedimentation test and self-weight consolidation test for dredged soil, and suspended solid concentration test for supernatant. Containment area has been designed and evaluated, based on field condition and concentration of suspended solid of effluent water. In addition, the relation between width of containment area and target concentration of suspended solid was analyzed. The results show that concentration of suspended solid decreases as the width of containment area decreases and the length of containment area increases. It was also observed that influence of change in ponding depth should be considered to predict the change in suspended solid concentration in supernatant discharged as disposal is conducted; the lower target suspended solid concentration of effluent water, the more important.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.