• Title/Summary/Keyword: 주형합성

Search Result 142, Processing Time 0.026 seconds

Effect of Synthesis Conditions on Physicochemical Properties of Zeolite SUZ-4 (합성조건이 제올라이트 SUZ-4의 물성에 미치는 영향)

  • Kim, Deok-Kyu;Kim, Young-Ho;Hwang, Young-Kyu;Chang, Jong-San;Park, Sang-Eon
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.6
    • /
    • pp.623-628
    • /
    • 2004
  • Zeolite SUZ-4 was successfully synthesized with TEAOH (Tetraethyl ammonium hydroxide) as structure directing agent under a vigorous stirring condition. Well-defined zeolite SUZ-4 structure was only obtained under stirring of 250 rpm or more. The results imply that stirring plays a pivotal role for reproducible synthesis. Morphology of SUZ-4 crystal was controlled by adjustment of water concentrations. The physicochemical characterization of SUZ-4 and its hydrothermal stability using a steam treatment were investigated by using XRD, BET, and $NH_3-TPD$.

Syntheses of Mesoporous Silica Hollow Spheres Using Polystyrene Template (폴리스티렌 주형 중공형 중간세공 나노 입자의 합성)

  • Chu, Sang-Wook;Sung, A-Reum;Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.13 no.4
    • /
    • pp.151-155
    • /
    • 2012
  • In the present study, we synthesized mesoporous silica hollow spheres with different wall thickness using polystyrene (PS) spheres as a structure template, tetraethoxysilane (TEOS) as a silica source, cetyltrimethylammonium bromide (CTAB) as a template. Particle size and dispersion of PS spheres were strongly depended on the concentration of surfactant in the aqueous solutions. The size of PS spheres was increased with decreasing concentration of surfactants. Dispersion of PS particle was improved when the surfactant concentration was lower than 0.5 g of surfactant.

Conversion of DME to Light Olefins over Mesoporous SAPO-34 Catalyst Prepared by Carbon Nanotube Template (탄소 나노튜브 주형물질에 의해 제조된 메조 세공 SAPO-34 촉매상에서 경질 올레핀으로의 DME 전환 반응)

  • Kang, Eun-Jee;Lee, Dong-Hee;Kim, Hyo-Sub;Choi, Ki-Hwan;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.34-40
    • /
    • 2014
  • Mesoporous SAPO-34 catalyst was successfully synthesized by the hydrothermal method using carbon nanotube (CNT) as a secondary template. The effects of CNT contents (0.5, 1.5, 2.5, and 4.5 mol%) on catalytic performances were investigated. The synthesized catalysts were characterized with XRD, SEM, nitrogen physisorption isotherm and $NH_3$-TPD. Among the synthesized catalysts, SAPO-34 catalyst prepared by the addition of 1.5 mol% CNT (1.5C-SAPO-34) observed not only the largest amounts of mesopore volume but also acid sites. However, the mesopore volume was relatively decreased by further increasing of CNT contents due to the formation of small crystalline. The catalytic lifetime and the selectivity of light olefins ($C_2{\sim}C_4$) were examined for the dimethyl ether to olefins reaction. As a result, the 1.5C-SAPO-34 catalyst showed an improvement of ca. 36% in a catalytic lifetime and a better selectivity to light olefins as compared with the general SAPO-34 catalyst.

Influence of vegetable wax on the moisture strength development of inorganic binder (무기바인더의 내수강도 발현에 미치는 식물성 왁스의 영향)

  • Bae, Min A;Kim, Kyeong Ho;Lee, Man Sig;Baek, Jae Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.574-580
    • /
    • 2020
  • An inorganic binder is eco-friendly because it can be cured at low temperatures and does not emit harmful gases. In addition, related research is progressing rapidly owing to the small defects in the core. On the other hand, inorganic binders based on silicates (SiO2-Na2O) have unique absorbent properties. This results in the absorption of moisture from the air and the weakening of the bonding force. In particular, the castings used in cast steel require high-strength properties because of the higher temperatures than aluminum castings. In this study, waxes containing ester groups were selected to improve the absorption of moisture of inorganic binders. The inorganic binder was characterized by X-ray fluorescence and thermogravimetric analysis-differential thermal analysis. The inorganic binder core strength was then evaluated. In the case of an inorganic binder containing wax, the water resistance increased to 216 N/㎠, confirming the up to 55% improvement in strength. Excellent casting characteristics were confirmed through steel castings.

Synthesis and Characterization of Theophylline Molecularly Imprinted Polymers (테오필린 분자 날인 고분자의 합성 및 특성)

  • Ryu, Ho-Sik;Kim, Beom-Soo;Kim, Dae-Su
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.138-142
    • /
    • 2008
  • Molecularly imprinting technology is an effective method to prepare a synthetic material with a high selectivity to a target molecule. In this study, a molecularly imprinted polymer (MIP) was synthesized via UV-polymerization using theophylline and UV-curable polyester-acrylate resin as a template molecule and a crosslinker, respectively. To elucidate the effects of functional monomer type on the performance of the MIP, each MIP was synthesized using mathacrylic acid, acrylic acid, and acryl amide as functional monomers. Each MIP showed higher rebinding capacity to theophylline than its corresponding non-imprinted polymer (NIP). The MIP synthesized using mathacrylic acid as a functional monomer showed the highest rebinding capacity to theophylline. The selectivity of the MIP was investigated using a solution with caffeine having a very similar structure to theophylline. The binding performance of the MIP to theophylline decreased when distilled water was used as a solvent, which has more polarity than chloroform.

Construction of Recombinant DNA for Purification of the Gag-Pro Transframe Protein of Human T-cell Leukemia Virus Type I (HTLV-I) (Human T-cell Leukemia Virus Type I (HTLV-I) 의 Gag-Pro Transframe 단백질 정제를 위한 재조합 DNA 의 제작)

  • 남석현
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.466-471
    • /
    • 1992
  • To determine the site at which -1 ribosomal frameshifting occurs within the gag-pro overlap of HTL V-I. DNA fragment corresponding to a portion of the gene overlap was cloned into a SP6 vector. The resultant plasmid harbors the hybrid gene consisting of a synthetic gene encoding 5 amino acids derived from chick prelysozyme including the initiator methionine plus 141 nucleotides of gag-pro overlapping region followed by Staphylococcus aurcus protein A gene fragment. In vitro transcription by SP6 RNA polymerase with this DNA template made an abundant amount of single species mRNA. Cell-free translation programmed with the RNA transcribed in vitro yielded a polypeptide of 21 kDal in size. which could be purified into homogeneity by IgG-Sepharose affinity chromatography. In vitro system described in this study must be useful for rapid purification and sequencing of the Gag-Pro transframe protein. allowing to determine the exact frameshift site on mRNA and to identify the tRNA involved in frameshifting event for the expression of pro gene.

  • PDF

Enzymatic Synthesis of Meth.yl Fructoside by Immobilized Invertase (고정화 전화당 효소에 의한 메틸 프룩토시드의 합성)

  • 허주형;김해성
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.313-319
    • /
    • 1993
  • Methyl fructoside was synthesized from sucrose and methanol using an immobilized invertase. The enzyme was covalently bound by glutaraldehyde on porous silica coated with polyethyleneimine to give loading capacity of 120mg of invertase per one gram of dry porous silica and effective activity of 100U per one milligram of bound invertase. Polyethyleneimine coating imparted a hydrophillic character, good activity retention and high loading capacity to the surface of porous silica as well as hydrophillic microenviroment in the vicinity of bound invertase. The immobilized enzyme was formed into an alginate-enclosed silica bead to have enough activity for methyl fructoside synthesis from aqueous methanol-sucrose solution. Using the alginate-enclosed biocatalyst the yield of methyl fructoside was obtained as high as 55.9% from aqueous 30% (v/v) methanol and 0.291mo1/l sucrose with 2U/ml activity at $25^{\circ}C$, pH 4.8.

  • PDF

금 나노로드 어레이 박막을 이용한 광학형 바이오 센서 개발

  • Yeom, Se-Hyeok;Lee, Dong-Ik;Sin, Han-Jae;Seo, Chang-Taek
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.436-436
    • /
    • 2014
  • 본 연구에서는 전 세계적으로 활발히 연구되고 있는 나노바이오센서 분야 중 가장 주목을 받고 있는 LSPR 원리를 이용한 바이오센서를 제작하였다. 금속 나노입자의 국소 표면 플라즈몬 공명현상에 의한 주위환경에 민감하게 반응하는 특성은 고감도 광학형 바이오센서, 화학물질 검출 센서등에 응용된다. 특히 금 나노막대와 같은 1차 나노구조물은 나노막대의 주변 환경 변화에 따라 뚜렷한 플라즈몬 흡수 밴드 변화를 나타냄으로 센서로 적용 했을 때 고감도의 측정이 가능하다. 본 연구에서는 다공성인 알루미늄 양극산화 박막 주형틀을 이용하여 다양한 종횡비를 가지는 금 나노막대를 합성하고, 나노막대 어레이 형태의 박막을 제작하였다. 금 나노막대의 합성은 알루미늄 양극산화막을 사용한 주형제조 방법(template method)을 사용하는 전기화학 증착법을 사용하였다. 우선 부도체인 알루미늄 양극 산화막의 한쪽면을 열증착 장비를 사용하여 금을 증착하여 작업 전극(working electrode)을 형성하였다. 백금 선(platinum wire)을 보조 전극(counter electrode)으로 사용하고 Ag/AgCl 전극을 기준 전극(reference electrode)으로 사용하여 삼전극계(three-electrode system)를 형성하였으며, 금 도금 용액(orotemp 24 gold plating solution, TECHNIC INC.)을 사용하여, 800 mV 전압에서 금 나노 막대를 합성하였다. 금 나노막대의 길이는 테플론 챔버를 통과한 전하량 또는 전기 증착 시간에 비례하여 결정된다. 금 나노막대를 성장시킨 알루미늄 양극산화막을 실리콘 웨이퍼에 은 페이스트를 사용하여 고정시킨 후 수산화나트륨 (NaOH)용액을 사용하여 알루미늄 양극산화막을 녹여내어 수직방향으로 정렬되어 있는 나노 막대 어레이 박막을 제조 하였다. 또한 제작된 금 나노막대 어레이의 광학적 특성을 평가하였다. 본 연구에서와 같이 나노막대를 직경방향으로 측정할 경우, 직경방향의 transverse mode만 측정된다. 금 나노 막대가 알루미늄 양극산화막 안에 포함된 상태로 측정된 금 나노로드 어레이 박막의 광 스펙트럼 분포는 금 나노막대의 가시광영역에서의 흡수 스펙트럼을 측정하였을시 직경 및 길이에 따라 transverse mode의 ${\lambda}$ max (최대 흡광)의 위치가 변화됨을 나타낸다. 실험 결과를 바탕으로 나노막대의 종횡비가 증가함에 따라 흡수 스펙트럼의 transverse mode ${\lambda}$ max가 미약하게 단파장 영역으로 이동하는 것을 확인할 수 있다. 이러한 결과는 원기둥 형태의 금 나노막대의 흡수 스펙트럼에 대한 이론적인 예측과 부합한다. 바이오센서로의 적용 가능성을 확인하기 위하여 자기조립단분자막을 형성하여 항체를 고정하고 CRP에 대한 응답특성을 평가하였다. CRP 항원-항체의 면역반응에 대한 실험 결과 CRP 항원의 농도가 증가함에 따라 넓은 측정범위에서 선형적으로 흡광도가 증가하는 결과를 나타내었으며, CRP 10 fg/ml의 농도까지 검출할 수 있었다. 센서의 선택성을 확인하기 위하여 감지하고자하는 대상물질이 아닌 Tn T 항원을 감지막에 반응시켜 흡광도 변화를 분석하였다. 결과적으로 제작된 센서칩은 선택성을 가지고 측정하고자하는 물질에만 반응함을 확인하였다. 이러한 결과는 다양한 직경을 사용한 부가적인 LSPR현상의 연구에 활용될 수 있을 것이다.

  • PDF

Soft-template Synthesis of Magnetically Separable Mesoporous Carbon (자성에 의해 분리 가능한 메조포러스 카본의 소프트 주형 합성)

  • Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.18 no.2
    • /
    • pp.75-81
    • /
    • 2017
  • In this study, we synthesized mesoporous carbon (Carbonized Ni-FDU-15) containing nanoporous structures and magnetic nanoparticles. Carbonized Ni-FDU-15 was synthesized via evaporation-induced self-assembly (EISA) and direct carbonization by using a triblock copolymer (F127) as a structure-directing agent, a resol precursor as a carbon-pore wall forming material, and nickel (II) nitrate as a metal ion source. The mesoporous carbon has a well-ordered two-dimensional hexagonal structure. Meanwhile, nickel (Ni) metal and nickel oxide (NiO) were produced in the magnetic nanoparticles in the pore wall. The size of the nanoparticles was about 37 nm. The surface area, pore size and pore volume of Carbonized Ni-FDU-15 were $558m^2g^{-1}$, $22.5{\AA}$ and $0.5cm^3g^{-1}$, respectively. Carbonized Ni-FDU-15 was found to move in the direction of magnetic force when magnetic force was externally applied. The magnetic nanoparticle-bearing mesoporous carbons are expected to have high applicability in a wide variety of applications such as adsorption/separation, magnetic storage media, ferrofluid, magnetic resonance imaging (MRI) and drug targeting, etc.

Application of Porous Nanofibers Comprising Hollow α-Fe2O3 Nanospheres Prepared by Applying Both PS Template and Kirkendall Diffusion Effect for Anode Materials in Lithium-ion Batteries (커켄달 효과와 주형법을 통해 합성한 α-Fe2O3 중공입자로 구성된 다공성1차원 구조체의 리튬 이차전지 음극활물질 적용)

  • Lee, Young Kwang;Jeong, Sun Young;Cho, Jung Sang
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.819-825
    • /
    • 2018
  • Porous nanofibers comprising hollow ${\alpha}-Fe_2O_3$ nanospheres were prepared by applying both template method and Kirkendall diffusion effect to electrospinning process. During heat-treatment processes, the solid Fe nano-metals formed by initial heat-treatment in the carbon matrix were converted into the hollow structured ${\alpha}-Fe_2O_3$ nanospheres. In particular, PS nanobeads added in the spinning solution were decomposed and formed numerous channels in the composite, which served as a good pathway for Kirkendall diffusion gas. The resulting porous nanofibers comprising hollow ${\alpha}-Fe_2O_3$ nanospheres were applied as an anode material for lithium-ion batteries. The discharge capacities of the nanofibers for the 30th cycle at a high current density of $1.0A\;g^{-1}$ was $776mA\;h\;g^{-1}$. The good lithium ion storage property was attributed to the synergetic effects of the hollow ${\alpha}-Fe_2O_3$ nanospheres and the interstitial nanovoids between the nanospheres. The synthetic method proposed in this study could be applied to the preparation of porous nanofibers comprising hollow nanospheres with various composition for various applications, including energy storage.