• Title/Summary/Keyword: 주행 경로생성

Search Result 85, Processing Time 0.021 seconds

Development of a ROS-Based Autonomous Driving Robot for Underground Mines and Its Waypoint Navigation Experiments (ROS 기반의 지하광산용 자율주행 로봇 개발과 경유지 주행 실험)

  • Kim, Heonmoo;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.32 no.3
    • /
    • pp.231-242
    • /
    • 2022
  • In this study, we developed a robot operating system (ROS)-based autonomous driving robot that estimates the robot's position in underground mines and drives and returns through multiple waypoints. Autonomous driving robots utilize SLAM (Simultaneous Localization And Mapping) technology to generate global maps of driving routes in advance. Thereafter, the shape of the wall measured through the LiDAR sensor and the global map are matched, and the data are fused through the AMCL (Adaptive Monte Carlo Localization) technique to correct the robot's position. In addition, it recognizes and avoids obstacles ahead through the LiDAR sensor. Using the developed autonomous driving robot, experiments were conducted on indoor experimental sites that simulated the underground mine site. As a result, it was confirmed that the autonomous driving robot sequentially drives through the multiple waypoints, avoids obstacles, and returns stably.

Tracking Path Generation of Mobile Robot for Interrupting Human Behavior (행동차단을 위한 이동로봇의 추적경로 생성)

  • Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.460-465
    • /
    • 2013
  • In this paper, we describe a security robot system to control human's behavior in the security area. In order to achieve these goals, we present a method for representing, tracking and human blocking by laserscanner systems in security area, with application to pedestrian tracking in a crowd. When it detects walking human who is for the security area, robot calculates his velocity vector, plans own path to forestall and interrupts him who want to head restricted area and starts to move along the estimated trajectory. While moving the robot continues these processes for adapting change of situation. After arriving at an opposite position human's walking direction, the robot advises him not to be headed more and change his course. The experimental results of estimating and tracking of the human in the wrong direction with the mobile robot are presented.

Development a scheduling model for AGV dispatching of automated container terminals (자동화 컨테이너 터미널의 AGV 배차 스케줄링 모형 개발)

  • Jae-Yeong Shin;Ji-Yong Kwon;Su-Bin Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.59-60
    • /
    • 2023
  • The automation of container terminals is an important factor that determines port competitiveness, and global advanced ports tend to strengthen their competitiveness through container terminal automation. The operational efficiency of the AGV, which is an essential transport equipment of the automated terminal, can improve the productivity of the automated terminal. The operation of AGVs in automated container terminals differs from that of conventional container terminals, as it is based on an automated system in which AGVs travel along designated paths and operate according to assigned tasks, requiring consideration of factors such as workload, congestion, and collisions. To prevent such problems and improve the efficiency of AGV operations, a more sophisticated model is necessary. Thus, this paper proposes an AGV scheduling model that takes into account the AGV travel path and task assignment within the terminal The model prevent the problem of deadlock and. various cases are generated by changing AGV algebra and number of tasks to create AGV driving situations and evaluate the proposed algorithm through algorithm and optimization analysis.

  • PDF

Path Planning for the Shortest Driving Time Considering UGV Driving Characteristic and Driving Time and Its Driving Algorithm (무인 주행 차량의 주행 특성과 주행 시간을 고려한 경로 생성 및 주행 알고리즘)

  • Noh, Chi-Beom;Kim, Min-Ho;Lee, Min-Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • $A^*$ algorithm is a global path generation algorithm, and typically create a path using only the distance information. Therefore along the path, a moving vehicle is usually not be considered by driving characteristics. Deceleration at the corner is one of the driving characteristics of the vehicle. In this paper, considering this characteristic, a new evaluation function based path algorithm is proposed to decrease the number of driving path corner, in order to reduce the driving cost, such as driving time, fuel consumption and so on. Also the potential field method is applied for driving of UGV, which is robust against static and dynamic obstacle environment during following the generated path of the mobile robot under. The driving time and path following test was occurred by experiments based on a pseudo UGV, mobile robot in downscaled UGV's maximum and driving speed in corner. The experiment results were confirmed that the driving time by the proposed algorithm was decreased comparing with the results from $A^*$ algorithm.

Moving Path following and High Speed Precision Control of Autonomous Mobile Robot Using Fuzzy (퍼지를 이용한 자율 이동 로봇의 이동 경로 추종 및 고속 정밀 제어)

  • Lee, Won-Ho;Lee, Hyung-Woo;Kim, Sang-Heon;Jung, Jae-Young;Roh, Tae-Jung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.907-913
    • /
    • 2004
  • The major interest of general mobile robot is making a route and following a maked route. But, In the case of robot that is in need of movement of partial high speed, the condition of dynamic limitation is exist, and in these conditions, it demands controlling against movements we want. In this paper, in respect of the following a route at the situation that don't have the environmental map, that is, unknown environments, to prevent the slide of moving robot or the overturn that can happen for it moves fast, we organize the dynamic condition of limitation using the fuzzy logic, and we obtain more safe and fast route tracing ability by changing the standard velocity. Especially, by modeling the line tracing mobile robot, we design the tracing controller against a realtime changing target, and using the fuzzy optimized velocity limitation controller, we confirm that our robot shows its stable tracing ability by limiting its velocity intelligently against the continuously changing line.

Development of the Path Generation and Control System for Unmanned Weeding Robot in Apple Orchards (사과 과원 무인 제초를 위한 작업 경로 생성 및 경로 제어 시스템 개발)

  • Jintack Jeon;Hoseung Jang;Changju Yang;Kyoung-do Kwon;Youngki Hong;Gookhwan Kim
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • Weeding in orchards is closely associated with productivity and quality. The customary weeding process is both labor-intensive and time-consuming. To solve the problems, there is need for automation of agricultural robots and machines in the agricultural field. On the other hand, orchards have complicated working areas due to narrow spaces between trees and amorphous terrain. Therefore, it is necessary to develop customized robot technology for unmanned weeding work within the department. This study developed a path generation and path control method for unmanned weeding according to the orchard environment. For this, the width of the weeding span, the number of operations, and the width of the weeding robot were used as input parameters for the orchard environment parameters. To generate a weeding path, a weeding robot was operated remotely to obtain GNSS-based location data along the superheated center line, and a driving performance test was performed based on the generated path. From the results of orchard field tests, the RMSE in weeding period sections was measured at 0.029 m, with a maximum error of 0.15 m. In the steering period within row and steering to the next row sections, the RMSE was 0.124 m, and 0.047 m, respectively.

Trajectory Regeneration Considering Velocity of Dynamic Obstacles Using the Nonlinear Velocity Obstacles (동적 장애물의 속도를 고려한 이동로봇의 궤적 재생성 기법)

  • Moon, Chang-Bae;Chung, Woojin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1193-1199
    • /
    • 2014
  • To achieve safe and high-speed navigation of a mobile service robot, velocity of dynamic obstacles should be considered while planning the trajectory of a mobile robot. Trajectory planning schemes without considering the velocity of the dynamic obstacles may collide due to the relative velocities or dynamic constraints. However, the general planning schemes that considers the dynamic obstacle velocities requires long computational times. This paper proposes a velocity control scheme by scaling the time step of trajectory to deal with dynamic obstacle avoidance problem using the RNLVO (Robot Nonlinear Velocity Obstacles). The RNLVO computes the collision conditions on the basis of the NLVO (Nonlinear Velocity Obstacles). The simulation results show that the proposed scheme can deal with collision state in a short period time. Furthermore, the RNLVO computes the collisions using the trajectory of the robot. As a result, accurate prediction of the moving obstacles trajectory does not required.

Development of Adaptive Moving Obstacle Avoidance Algorithm Based on Global Map using LRF sensor (LRF 센서를 이용한 글로벌 맵 기반의 적응형 이동 장애물 회피 알고리즘 개발)

  • Oh, Se-Kwon;Lee, You-Sang;Lee, Dae-Hyun;Kim, Young-Sung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.377-388
    • /
    • 2020
  • In this paper, the autonomous mobile robot whit only LRF sensors proposes an algorithm for avoiding moving obstacles in an environment where a global map containing fixed obstacles. First of all, in oder to avoid moving obstacles, moving obstacles are extracted using LRF distance sensor data and a global map. An ellipse-shaped safety radius is created using the sum of relative vector components between the extracted moving obstacles and of the autonomuos mobile robot. Considering the created safety radius, the autonomous mobile robot can avoid moving obstacles and reach the destination. To verify the proposed algorithm, use quantitative analysis methods to compare and analyze with existing algorithms. The analysis method compares the length and run time of the proposed algorithm with the length of the path of the existing algorithm based on the absence of a moving obstacle. The proposed algorithm can be avoided by taking into account the relative speed and direction of the moving obstacle, so both the route and the driving time show higher performance than the existing algorithm.

A Study on the Localization Method for the Autonomous Navigation of Synchro Drive Mobile Robot (동기 구동형 이동로봇의 자율주행을 위한 위치측정과 경로계획에 관한 연구)

  • Ku, Ja-Yl;Hong, Jun-Peu;Lee, Won-Suk
    • 전자공학회논문지 IE
    • /
    • v.43 no.1
    • /
    • pp.59-66
    • /
    • 2006
  • In this study, we have proposed a motion equation to control synchro drive mobile robot, a path plan to compute and track the best path to given destination and a technique utilizing uniform distribution and cluster management based Monte Carlo localization to have track current position of moving robot. In the localization test which was repeated 73 times resulted as following. The average process time of original Monte Carlo localization was 12.8ms. The proposed cluster management Monte Carlo localization resulted 9.3ms. Also the proposed method resulted correctly in the cases where original method failed.

Path Planning for Static Obstacle Avoidance: ADAM III (정적 장애물 회피를 위한 경로 계획: ADAM III)

  • Choi, Heejae;Song, Bongsob
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.241-249
    • /
    • 2014
  • This paper presents a path planning algorithm of an autonomous vehicle (ADAM III) for collision avoidance in the presence of multiple obstacles. Under the requirements that a low-cost GPS is used and its computation should be completed with a sampling time of sub-second, heading angle estimation is proposed to improve performance degradation of its measurement and a hierarchical structure for path planning is used. Once it is decided that obstacle avoidance is necessary, the path planning consists in three steps: waypoint generation, trajectory candidate generation, and trajectory selection. While the waypoints and the corresponding trajectory candidates are generated based on position of obstacles, the final desired trajectory is determined with considerations of kinematic constraints as well as an optimal condition in a term of lateral deviation. Finally the proposed algorithm was validated experimentally through field tests and its demonstration was performed in Autonomous Vehicle Competition (AVC) 2013.