• 제목/요약/키워드: 주파수 응답 함수, FRF

검색결과 112건 처리시간 0.033초

대형 터빈-발전기에서의 유체 불안정진동 해소사례 (A case study on the vibration by fluid induced instability at large steam turbine-generator)

  • 한승우;노철우;김인철;주인국;김명식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1066-1071
    • /
    • 2007
  • This case study refers to turbine-generator with retrofitted turbine rotor. Vibration problem occurring after the retrofit was mainly due to high vibration from exciter side. However, repeated test run and operation during scheduled maintenance caused high vibration from generator bearing, and post-overhaul test run before turbine vibration correction caused oil whip on the bearing. This case study shows how to analyze vibration condition of high turbine generator vibration detected during the post-overhaul test run and vibration condition of offline and online data to reflect it on establishing maintenance schedule and overhaul correction procedure. Vibration data could be acquired during steady load operation or even with varying speed and load. Each data is important for machinery condition evaluation. This case study shows that the vibration data during extreme condition is the key factor in analysis, which helps to find the machinery problem.

  • PDF

대형 터빈-발전기에서의 유체 불안정진동 해소사례 (A Case Study on the Vibration by Fluid Induced Instability at Large Steam Turbine-generator)

  • 한승우;노철우;유무상;김인철;주인국;김명식
    • 한국소음진동공학회논문집
    • /
    • 제18권2호
    • /
    • pp.238-246
    • /
    • 2008
  • This case study refers to turbine-generator with retrofitted turbine rotor. Vibration problem occurring after the retrofit was mainly due to high vibration from exciter side. However, repeated test run and operation during scheduled maintenance caused high vibration from generator bearing, and post-overhaul test run before turbine vibration correction caused oil whip on the bearing. This case study shows how to analyze vibration condition of high turbine generator vibration detected during the post-overhaul test run and vibration condition of offline and online data to reflect it on establishing maintenance schedule and overhaul correction procedure. Vibration data could be acquired during steady load operation or even with varying speed and load. Each data is important for machinery condition evaluation. This case study shows that the vibration data during extreme condition is the key factor in analysis, which helps to find the machinery problem.

Resin Chock 교반기용 임펠러가 달린 축의 진동해석 (Vibration Analysis of Shaft with Impeller for Resin Chock Mixing Machine)

  • 홍도관;박진우;백황순;안찬우
    • 대한기계학회논문집A
    • /
    • 제32권11호
    • /
    • pp.970-977
    • /
    • 2008
  • This paper deals with the dynamic characteristics of the shaft with impeller model which is the most important part in developing the resin mixing machine. Through reverse engineering, it is possible to make the shaft with impeller geometry model which is necessary vibration characteristic analysis by commercial impeller. The natural frequency analysis and structural analysis using finite element analysis software are performed on the imported commercial shaft with impeller model. The most important fundamental natural frequency of the shaft with impeller model is around 14.5 Hz, which well agrees with modal testing. The most effective design variables were extracted by ANOM(analysis of means) and pareto chart. This paper presents approximation 2nd order polynomial as design variables using RSM(response surface methodology). Generally, RSM take 2 or 3 design variables, but this method uses 5 design variables with table of mixed orthogonal array. Further more, the analyzed result of the commercial shaft with impeller is to be utilized for the structural design of resin chock mixing machine.

구조물 동특성 변경을 통한 설계 개선 -공조기 실외기 소음 저감 적용 (Design Improvement via Structural Dynamics Modification - Application to Noise Reduction in Outdoor Unit of Air Conditioner)

  • 최상현;박남규;박윤식
    • 한국소음진동공학회논문집
    • /
    • 제12권5호
    • /
    • pp.355-364
    • /
    • 2002
  • The goal of this research is to reduce noise level of an outdoor unit of air conditioner by changing its dynamic characteristics using SDM (structural dynamics modification) technique. At first, the emitting noise was measured and analyzed. The measurement records show the most critical frequency components which influences on the noise level. Then it was tried to move the natural frequencies outside the critical frequency region by SDM. Since it is very difficult to get a reliable FE model of air conditioner, experimentally measured frequency response functions were used to derive sensitivities that are very important to obtain design changes. The positions of modification and the thickness of modifying structures were determined to improve the dynamic characteristics of air conditioner. The recommended design guideline to move its natural frequencies outside the targeting frequency range was obtained. Then in order to prove its effectiveness, the changed design was experimentally tested and found that the SDM result is very effective to reduce not only its vibration but also its emitting noise.

밸런스 샤프트 적용에 따른 4기통 디젤 엔진 블록의 방사소음 특성 개선 해석 (The Analysis of NVH Characteristics of 4-Cylinerder Diesel Engine Block by Adapting Balancing Shaft)

  • 최천;서명원;김영진
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.129-137
    • /
    • 2000
  • The powertrain is an important factor for the interior and exterior noise behavior of the vehicle Thus, the noise vibration and harshness(NVH) behavior of an engine is becoming a major target of the powertrain development. This paper describes the analyses with the aim to reduce the vibration and noise of an advanced inline 4-cylinder diesel engine block by use of CAE methods. The characteristics of an engine block as a main excitation source of car interior noise is studied. Particularly, The effect of balance shaft to reduce the 2nd order engine excitation force is calculated by forced vibration and radiated noise analysis. The engine exitation forces are obtained under real operating conditions. It is shown that the reduction of vibration and noise level by adapting blancing shaft is well predicted and rediated noise is directly related to the surface velocity of engine block.

  • PDF

지진시 앵커기초의 한계성능 평가를 위한 진동대 실험 (Shaking Table Test for an Evaluation of the Limit State Capacity of an Anchor Foundation in the case of a Seismic Event)

  • 김민규;최인길;권형오
    • 한국지진공학회논문집
    • /
    • 제14권5호
    • /
    • pp.23-31
    • /
    • 2010
  • 본 연구에서는 지진시 앵커기초의 파괴한계성능을 평가하기 위하여 진동대 실험을 수행하였다. 앵커기초에 발생 가능한 열화현상인 균열의 영향을 평가하기 위하여 균열이 없는 시편, 관통균열 시편 그리고 파괴예상면 내에 측면균열이 있는 시편을 제작하여 각각의 파괴한계성능을 평가하였다. 우선적으로 임팩트 해머에 의한 가진 실험을 통하여 동특성분석실험을 수행하여 실험모형의 동특성을 분석하였으며, 앵커기초의 파괴 시까지 진동대 실험을 수행하여 극한거동을 평가하였다. 최종적으로 앵커기초의 설계기준과 비교하여 거동특성을 분석하였다.

최적구조변경법에 의한 자동차 엔진 블록의 중량최소화에 관한 연구 (A Study on the Weight Minimization of an Automobile Engine Block by Optimum Structural Modification)

  • 길병래
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.560-568
    • /
    • 1998
  • Recently to develop an automobile with better properities many researches and investments have been executed. In this paper we intend to improve the automobile properties by reducing the weight of the engine without changing the dynamic characteristics. At first the vibration analysis by the Substructure Synthesis Mehtod and the exciting test of the engine model performed to confirm the reliability of the analyzing tools. And the weight minimiza-tion is performed by the Sensitivity Analysis and the Optimum Structural Modificationl. To decrease the engine weight ideally the weight of the parts with the low sensitivity is to cut mainly and the changing quantity of the natural frequency by the cut is to be recovered by the weight modification of the parts with the high sensitivity. As actually the mathematical unique solution for the homogeneous problem(i. e. 0 object func-tion problem)does not exist we redesign the engine block with much thinner initial thickness and recover the natural frequencies and natural modes of original structure by the sensitivity analy-sis and then observe the Frequency Response Function(FRF) for the interesting points. In this analysis the original thickness of the engine model is 8mm and the redesigned initial thicknesses are 5mm and 6mm, And the number of the interesting natural frequencies are 1, 2, 3, 4 and 5 respectively.

  • PDF

다축 로드 시뮬레이터의 노면 프로파일 재현 소프트웨어 개발 (Realization Software Development of Road Profile for Multi-axial Road Simulator)

  • 정상화;류신호;김우영;양성모;김택현
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.190-198
    • /
    • 2002
  • Full scale durability test in the laboratory is an essential of any fatigue life evaluation of components or structures of the automotive vehicle. Component testing is particularly important in today's highly competitive industries where the design to reduce weight and production costs must be balanced with the necessity to avoid expensive service failure. Generally, hydraulic road simulator is used to carry out the fatigue test and the vibration test. In this paper, the algorithm and software to realize the real road profile are developed. The operation software for simultaneously controlled multi-axial road simulator is developed and the input and output data are displayed window based PC controller in the real time. Futhermore, the software to generate the real road profile are developed. The validity of the software are verified by applying the belgian road, the city road, the highway, and the gravel road. The results of the above experiment show that the real road profiles are realized well after 10th iteration.

모형개선을 위한 감쇠행렬 추정법의 비교 (Comparison of Damping Matrix Estimation Methods for Model Updating)

  • 이건명;주영호;박문수
    • 한국소음진동공학회논문집
    • /
    • 제20권10호
    • /
    • pp.923-930
    • /
    • 2010
  • Finite element models of dynamic systems can be updated in two stages. In the first stage, mass and stiffness matrices are updated neglecting damping, and in the second stage, damping matrices are estimated with the mass and stiffness matrices fixed. Three methods to estimate damping matrices for this purpose are proposed in this paper. The methods include one for proportional damping systems and two for non-proportional damping systems. Method 1 utilizes orthogonality of normal modes and estimates damping matrices using the modal parameters extracted from the measured responses. Method 2 estimates damping matrices from impedance matrices which are the inverse of FRF matrices. Method 3 estimates damping using the equation which relates a damping matrix to the difference between the analytical and measured FRFs. The characteristics of the three methods are investigated by applying them to simulated discrete system data and experimental cantilever beam data.

정밀 장비의 진동 및 동강성 허용규제치의 결정을 위한 연구 (A Study on the Decision Vibration Criteria & Dynamic Stiffness Criteria of the Vibration Sensitive Equipment)

  • 김주영;이규섭;백재호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.423-423
    • /
    • 2009
  • 미진동 제어라는 분야에 대한 연구는 반도체 산업이 초고도화 및 초정밀화가 진전되고 있는 최근에 들어와 학계보다는 전문 반도체와 TFT-LCD의 미진동제어 관련 엔지니어 그룹과 정밀 장비 제작사를 중심으로 이루어져왔다. 고집적 생산 제품을 가공 및 검사하기 위해서는 가공 선폭 이상의 분해 성능을 가진 고정밀도의 생산 및 검사 장비가 필요하다. 이런 고정밀도 생산 및 검사장비는 내외부로부터 입력되는 진동에 민감한 영향을 받는다. 초기 반도체 산업을 주도한 미국을 중심으로 일부 학자와 반도체 진동 제어를 수행하는 전문연구소에서 작성한 BBN-Criteria는 정밀장비의 용도나 분해능 별로 정리된 진동허용규제치를 지침서로 사용하여 왔다. 그러나 장비의 엄밀한 주파수 특성 및 정밀도 측면에서 불확실한 영역부분을 가지고 있기 때문에 미소한 진동을 제어하는 구조 설계자 관점에서는 불충분한 자료이다. 그리고 주파수 분해능을 가진 진동허용규제치를 제시하는 것이 바람직하지만 대부분의 제작사에서는 그렇지 못하고 있다. 그런 이유에는 장비 개개의 진동허용규제치가 다른 고가의 장비 전량에 대하여 시험을 수행해야 하는 점, 가진(加振)특성, 중량, 크기 등의 진동실험 자체에 어려움 때문이다. 또한 진동실험시 가진주파수의 분해능의 결려에 따른 장비의 동적 특성이 고려되지 않은 불확실한 영역 부분을 포함한 진동허용규제치를 제시함으로서 불확실한 영역부분의 진동 하한치를 진동허용규제치의 상한치로 결정하는 문제로 인하여 진동허용규제치가 더욱 가혹하게 제시되어 건물 구조 설계와 방진의 어려움을 가중시킬 여지가 있다. 본 논문에서는 이런 어려움 등을 회피하는 방법으로 주파수응답함수(Frequency Response Function, FRF)를 이용하여 정밀장비의 진동허용규제치를 결정하는 간편하면서도 더욱 정밀한 새로운 방법을 모색하였다.

  • PDF