• Title/Summary/Keyword: 주파수 수직탐사

Search Result 38, Processing Time 0.02 seconds

Geometric and Frequency Soundings in Small-Loop Electromagnetic Surveys (소형 루프 전자탐사에서 기하학적 수직탐사와 주파수 수직탐사)

  • Cho, In-Ky;Ahn, Kyoung-Chan
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.4
    • /
    • pp.223-229
    • /
    • 2020
  • Small-loop EM techniques have been used in many geophysical investigations, including shallow engineering and environmental surveys. Even though geometric and frequency soundings have been widely used, there is a debate regarding the effectiveness of frequency sounding, especially when the coil spacing is small. In this study, we analyzed the effectiveness of geometric as well as frequency soundings via the one-dimensional modeling of small-loop EM surveys. The numerical results reveal that geometric sounding can effectively provide underground information. Conversely, the frequency soundings are only effective when the loop spacing is relatively large, that is, when the induction number is large. On the contrary, the frequency soundings fail to provide any information concerning the subsurface layers if the loop spacing is not large.

Frequency Sounding in Small-Loop EM Surveys (소형루프 전자탐사법에서의 주파수 수직탐사)

  • Cho In-Ky;Lim Jin-Taik
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.3
    • /
    • pp.119-125
    • /
    • 2003
  • The small-loop electromagnetic (EM) technique has been used successfully for many geophysical investigations, particularly for shallow engineering and environmental surveys. In conventional small loop EM operating at small induction numbers, geometric sounding has been widely used because the depth of penetration of EM energy depends only on the source-receiver separation. Recently developed small loop EM system, however, measures the secondary magnetic field, $H^S$, at multiple frequencies with a fixed source-receiver separation and frequency sounding is tried actively. In this study, we analyzed the behavior of in-phase and quadrature components of ${H^S}_z$, for horizonal coplanar (HCP) configuration over two-layer models. Through this theoretical analysis, it was found that the in-phase component of ${H^S}_z$ is more suitable for frequency sounding than the quadrature component. But, the in-phase component of ${H^S}_z$ is too small to measure, especially in resistive and noisy environment like Korea. Using the fact that the quadrature component is much greater than the in-phase component and the difference of quadrature component of ${H^S}_z$ measured at two frequencies shows the same behavoir as the in-phase component, we suggested an alternative frequency sounding technique. Also, we defined an apparent conductivity, which reflects well the conductivity of subsurface layers.

One-dimensional Inversion of Electromagnetic Frequency Sounding Data (주파수 수직 전자탐사 자료의 1차원 역산)

  • Cho In-Ky;Lim Jin-Taik
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.180-186
    • /
    • 2003
  • We have developed an one-dimensional (ID) inversion program that can invert multiple frequency small-loop EM data from horizontal coplanar (HCP) and vertical coplanar (VCP) configurations. The inverse problem is solved using least-squares method with active constraint balancing (ACB) method and Jacobian matrix is calculated analytically. Tests using synthetic data from simple ID models indicate that conductivity and depth of each layer can be estimated properly when both real and imaginary data are used together.

Subsurface Imaging by a Small-loop EM Survey (소형루프 전자탐사법에 의한 지하 영상화)

  • Lim Jin-Taik;Cho In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.187-194
    • /
    • 2003
  • A small-loop electromagnetic (EM) system using multiple frequencies has advantages in survey speed and cost despite of limitation on its depth of investigation. Therefore, small-loop EM surveys have been frequently used on various site investigations involving engineering and environmental problems. We have developed a subsurface imaging technique using small loop EM data. We used a one-dimensional (ID) inversion method to reconstruct a subsurface image from frequency EM sounding data. Tests using simulated data show that the method can reasonably recover the subsurface resistivity structure. Also, the method was tested on field data obtained with multiple frequency small loop EM system at a farm in Chunchon, Korea. The resistivity image obtained form field data compares favorably with the image from the dipole-dipole resistivity survey.

Seismic attenuation from VSP data in methane hydrate-bearing sediments (메탄 하이드레이트 부존 퇴적층으로부터 획득한 수직탄성파 (VSP) 자료에서의 탄성파 진폭 감쇠)

  • Matsushima, Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • Recent seismic surveys have shown that the presence of methane hydrate (MH) in sediments has significant influence on seismic attenuation. I have used vertical seismic profile (VSP) data from a Nankai Trough exploratory well, offshore Tokai in central Japan, to estimate compressional attenuation in MH-bearing sediments at seismic frequencies of 30-110 Hz. The use of two different measurement methods (spectral ratio and centroid frequency shift methods) provides an opportunity to validate the attenuation measurements. The sensitivity of attenuation analyses to different depth intervals, borehole irregularities, and different frequency ranges was also examined to validate the stability of attenuation estimation. I found no significant compressional attenuation in MH-bearing sediments at seismic frequencies. Macroscopically, the peaks of highest attenuation in the seismic frequency range correspond to low-saturation gas zones. In contrast, high compressional attenuation zones in the sonic frequency range (10-20 kHz) are associated with the presence of methane hydrates at the same well locations. Thus, this study demonstrated the frequency-dependence of attenuation in MH-bearing sediments; MH-bearing sediments cause attenuation in the sonic frequency range rather than the seismic frequency range As a possible reason why seismic frequencies in the 30-110 Hz range were not affected in MH-bearing sediments, I point out the effect of thin layering of MH-bearing zones.

Spatial analysis of small-loop electromagnetic survey data in a seawater intrusion region (해수침투 지역에서 소형루프 전자탐사 자료의 공간 분석)

  • Song, Sung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.114-120
    • /
    • 2006
  • The main purpose of this study is to apply spatial analysis using semivariograms to small-loop electromagnetic survey data to assess the extent of seawater intrusion in an experimental watershed. To indicate the extent of seawater intrusion over the study area, vertical electrical soundings at 33 points and electrical conductivity logging in two wells were conducted. From the correlation between resistivities obtained by inversion and the depth of the aquifer at the two wells, the region of seawater intrusion was identified and demonstrated by electrical conductivity logging results obtained over two years. To measure the variation of apparent conductivity with depth, an electromagnetic survey in six frequency bands was adopted. Apparent conductivity mapping with spatial analysis using semivariograms is an effective technique for identifying the region of seawater intrusion at shallow depth.

Precise Detection of Buried Underground Utilities by Non-destructive Electromagnetic Survey (비파괴 전자탐사에 의한 지하 매설물의 정밀탐지)

  • Shon, Ho-Woong;Lee, Seung-Hee;Lee, Kang-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.275-283
    • /
    • 2002
  • To detect the position and depth of buried underground utilities, method of Ground Penetrating Radar(GPR) survey is the most commonly used. However, the skin-depth of GPR is very shallow, and in the places where subsurface materials are not homogeneous and are compose of clays and/or salts and gravels, GPR method has limitations in application and interpretation. The aim of this study is to overcome these limitations of GPR survey. For this purpose the site where the GPR survey is unsuccessful to detect the underground big pipes is selected, and soil tests were conducted to confirm the reason why GPR method was not applicable. Non-destructive high-frequency electromagnetic (HFEM) survey was newly developed and was applied in the study area to prove the effectiveness of this new technique. The frequency ranges $2kHz{\sim}4MHz$ and the skin depth is about 30m. The HFEM measures the electric field and magnetic field perpendicular to each other to get the impedance from which vertical electric resistivity distribution at the measured point can be deduced. By adopting the capacitive coupled electrodes, it can make the measuring time shorter, and can be applied to the places covered by asphalt an and/or concrete. In addition to the above mentioned advantages, noise due to high-voltage power line is much reduced by stacking the signals. As a result, the HFEM was successful in detecting the buried underground objects. Therefore this method is a promising new technique that can be applied in the lots of fields, such as geotechnical and archaeological surveys.

Trends and Applications on Multi-beam Side Scan Sonar Sensor Technology (측면주사음탐기 센서 기술 동향 및 응용)

  • Kye, J.E.;Cho, J.I.;Yoo, W.P.;Choi, S.L.;Park, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.28 no.6
    • /
    • pp.167-179
    • /
    • 2013
  • 측면주사음탐기(side scan sonar) 센서는 해저면의 영상을 실시간으로 탐색하는 장비로서 해양탐사 및 지질조사, 해저통신 및 어초조사, 기뢰 및 잠수정 탐색 등 해양탐사와 관련한 대표적 장비라고 할 수 있다. 센서는 해저와 목표물을 표시하기 위해 소나 플랫폼의 움직임을 사용하며, 동작주파수 범위는 20kHz~500kHz이다. 이 주파수는 요구되는 깊이와 목표물의 크기에 의해서 결정된다. 센서는 수직으로 $45^{\circ}$, 수평으로 $2^{\circ}$ 정도의 신호전파 방사각도 폭을 가진다. 최근에는 해양탐사와 개발을 위해 빠른 스캔속도와 정확한 정보, 고해상도의 영상을 얻기 위해 해저면에 대한 다중빔 영상센서의 핵심기술로 활용되면서 그 활용성과 중요성이 점차 증가되고 있다. 본고에서는 측면주사소나 센서의 기본 원리 및 종류, 디중빔측면주사소나 기술동향, 응용분야의 사례를 소개함으로써, 국내 기반기술 및 상용화 개발이 취약한 측면주사 음탐기 센서에 대한 이해를 돕고자 한다.

Application of Displacement-Vector Objective Function for Frequency-domain Elastic Full Waveform Inversion (주파수 영역 탄성파 완전파형역산을 위한 변위벡터 목적함수의 적용)

  • Kwak, Sang-Min;Pyun, Suk-Joon;Min, Dong-Joo
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.220-226
    • /
    • 2011
  • In the elastic wave equations, both horizontal and vertical displacements are defined. Since we can measure both the horizontal and vertical displacements in field acquisition, these displacements compose a displacement vector. In this study, we propose a frequency-domain elastic waveform inversion technique taking advantage of the magnitudes of displacement vectors to define objective function. When we apply this displacement-vector objective function to the frequency-domain waveform inversion, the inversion process naturally incorporates the back-propagation algorithm. Through the inversion examples with the Marmousi model and the SEG/EAGE salt model, we could note that the RMS error of the solution obtained by our algorithm decreased more stably than that of the conventional method. Particularly, the density of the Marmousi model and the low-velocity sub-salt zone of the SEG/EAGE salt model were successfully recovered. Since the gradient direction obtained from the proposed objective function is numerically unstable, we need additional study to stabilize the gradient direction. In order to perform the waveform inversion using the displacementvector objective function, it is necessary to acquire multi-component data. Hence, more rigorous study should be continued for the multi-component land acquisition or OBC (Ocean Bottom Cable) multi-component survey.

3-D Crosshole EM Modeling by the Extended Born Approximations (확장된 Born근사법에 의한 시추공간 3차원 전자탐사 모델링)

  • Cho, In-Ky;Choi, Kyoung-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.3
    • /
    • pp.142-148
    • /
    • 1999
  • Three-dimensional electromagnetic modeling algorithm in homogeneous half-space was developed using the extended Born approximation to an electric field integral equation. To examine the performance of the extended Born approximation algorithm, the results were compared with those of the full integral equation results. For a crosshole source-receiver configuration, the agreement between the integral equation and the extended Born approximation was remarkable when the source frequency is lower than 20 kHz and conductivity contrast lower than 1:10. Beyond this conductivity contrast, the simulated results by the extended Born approximation exhibit a difference with respect to those by the integral equation. Therefore, the limit of accuracy lies below contrast of 1:10 in the extended Born approximation. Since for the source frequency range from 20 kHz to 100 kHz, however, the difference is relatively small, the extended Born approximation could be used for a reasonable 3-D EM modeling algorithm.

  • PDF