• Title/Summary/Keyword: 주사현미경

Search Result 2,438, Processing Time 0.033 seconds

Characterization of CaCO3 Formation Using an Ion Selective Electrode : Effects of the Mg/Ca Ratio and Temperature (이온 선택성 전극을 이용한 탄산칼슘 형성 특성 연구 : 마그네슘-칼슘 비율과 반응 온도의 영향)

  • Misong Han;Byoung-Young Choi;Seung-Woo, Lee;Jinyoung Park;Soochun Chae;Jun-Hwan Bang;Kyungsun Song
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.111-120
    • /
    • 2023
  • The nucleation mechanism was studied using a calcium ion selective electrode (Ca ISE) to observe the formation of CaCO3, a representative mineral in the CO2 cycle, and to analyze the effect of the Mg/Ca-ratio and temperature on the formation of pre-nucleation cluster (PNC) and CaCO3. As a result of the experiment, a small amount of crystal was formed. Energy dispersive X-ray spectroscopy (EDS) was used for surface element analysis, and a field emission scanning-electron microscope (FE-SEM) was used for the morphology analysis of synthesized carbonates. These results showed that various shapes of crystalline CaCO3 (calcite, aragonite, etc.) were observed for each Mg/Ca ratio and temperature. In addition, the calibration plot obtained from Ca ISE showed information on the formation process of CaCO3. Our results showed that as magnesium ions interfered with the binding of calcium and carbonate ions and delayed the aggregation between PNCs, the nucleation and formation of CaCO3 were delayed. On the other hand, the temperature showed an opposite trend as compared to the effect of magnesium under our experimental conditions, indicating that temperature accelerated the formation of CaCO3. Furthermore, the morphology of CaCO3 clearly changed according to the Mg/Ca ratio and temperature, and it was confirmed that the two factors are very important for CaCO3 formation in that they could affect the overall process.

Comparison of shear bond strength between various temporary prostheses resin blocks fabricated by subtractive and additive manufacturing methods bonded to self-curing reline resin (절삭 및 적층 가공법으로 제작한 임시 보철물 레진 블록과 재이 장용 자가중합 레진의 전단결합강도 비교)

  • Hyo-Min Ryu;Jin-Han Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.3
    • /
    • pp.189-197
    • /
    • 2023
  • Purpose. This study aimed to compare and evaluate the shear bond strength between various temporary prostheses resin blocks fabricated by subtractive and additive manufacturing methods bonded to self-curing reline resin. Materials and methods. The experimental groups were divided into 4 groups according to the manufacturing methods of the resin block specimens and each specimen was fabricated by subtractive manufacturing (SM), additive manufacturing stereolithography apparatus manufacturing (AMS), additive manufacturing digital light processing manufacturing (AMD) and conventional self-curing (CON). To bond the resin block specimens and self-curing resin, the reline resin was injected and polymerized into the same location of each resin block using a silicone mold. The shear bond strength was measured using a universal testing machine, and the surface of the adhesive interface was examined by scanning electron microscopy. To compare between groups, one-way ANOVA was done followed by Tukey post hoc test (α = 0.05). Results. The shear bond strength showed higher values in the order of CON, SM, AMS, and AMD group. There were significant differences between CON and AMS groups, as well as between CON and AMD groups. but there were no significant differences between CON and SM groups (P > .05). There were significant differences between SM and AMD groups, but there were no significant differences between SM and AMS groups. The AMS group was significantly different from the AMD group (P < .001). The most frequent failure mode was mixed failures in CON and AMS groups, and adhesive failures in SM and AMD groups. Conclusion. The shear bond strength of SM group showed lower but not significant bond strength compared to the CON group. The additive manufacturing method groups (AMS and AMD) showed significantly lower bond strength than the CON group, with the AMD group the lowest. There was also a significant difference between the AMD and SM group.

Influence of Artificial Rainfall on Wheat Grain Quality During Ripening by Using the Speed-breeding System (세대단축시스템을 이용한 국내 밀 품종의 등숙기 강우에 의한 품질변이 평가)

  • Hyeonjin Park;Jin-Kyung Cha;So-Myeong Lee;Youngho Kwon;Jisu Choi;Ki-Won Oh;Jong-Hee Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.188-196
    • /
    • 2023
  • Wheat (Triticum aestivum L.) is an important crop in Korea, with a per capita consumption of 31.6 kg in 2019. In the southern region, wheat is grown after paddy rice, and it is harvested during the rainy season in mid-June. This timing, in combination with high humidity and untimely rainfall, activates the enzyme alpha-amylase, which breaks down starch in the wheat grains. As a result, sprouted grains have lower quality and value for flour. However, seeds that absorb water before sprouting are expected to maintain better quality. The aim of the study was to identify the critical period during wheat maturation when rainfall has the greatest impact on grain quality, to prevent price declines due to quality deterioration. Two wheat cultivars, Jokyoung and Hwanggeumal, were grown in a speed breeding room, and artificial rainfall was applied at different times after heading (30, 35, 40, 45, 50, and 55 days). The proportion of vitreous grains decreased from 40 to 55 days after heading (DAH). Both cultivars had chalky grain sections from 35 DAH, with Hwanggeumal having a higher proportion of vitreous grains. Starch degradation was observed using FE-SEM (Field Emission Scanning Electron Microscope) at 40 DAH for Jokyoung and 50 DAH for Hwanggeumal. Color measurements indicated increased L and E values from 40 DAH, with rain treatment at 55 DAH leading to a significant increase in L values for both cultivars. Ash content increased at 45 DAH, whereas SDSS decreased at 35 DAH. Overall, grain quality from 40 DAH until harvest was found to be affected to the greatest extent by direct exposure of the spikes to moisture. Red wheat showed better quality than white wheat. These findings have implications for the cultivation of high-quality wheat and can guide future research efforts in this area.

A study of the antifungal properties and flexural strength of 3D printed denture base resin containing titanium dioxide nanoparticles (이산화티타늄 나노입자를 함유한 3D 프린팅 의치상 레진의 항진균성 및 굽힘 강도에 대한 연구)

  • Seok-Won Yoon;Young-Eun Cho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.62 no.2
    • /
    • pp.95-103
    • /
    • 2024
  • Purpose. With the advancement of digital technology, 3D printing is being utilized in the fabrication of denture base. Nevertheless, increasing microbial adhesion to the surface of denture base has been reported as the disadvantage of 3D-printed denture base. The purpose of this study is to investigate the antifungal properties and flexural strength of 3D-printed denture base resin according to the different contents of titanium dioxide nanoparticles. Materials and methods. Titanium dioxide nanoparticles were mixed with the 3D printing resin at the ratios of 0.5, 1, 1.5, and 2 wt%. Twenty specimens per each group were printed in the form of cylindrical shape (diameter: 20 mm, height: 3 mm) to evaluate antifungal properties. Ten specimens from each group underwent polishing using autogrinder, while the remaining ten specimens did not. Candida albicans in hyphae form was inoculated onto each specimen, optical density and colony-forming unit were analyzed. The surface of the specimen was observed using scanning electron microscopy. To evaluate the flexural strength, twenty specimens per each group were 3D printed in the form of rectangular prism shape (length: 64 mm, height: 10 mm, width: 3 mm) and three-point bending tests were conducted using universal testing machine according to ISO 20795-1. Results. Colony-forming unit of C.albicans and optical density of culture medium showed no difference between non-polished groups, but decreased in the polished groups at concentration of 1, 1.5, 2 wt% titanium dioxide nanoparticles. Flexural strength increased with titanium dioxide nanoparticle at concentration of 0.5, 1, 1.5 wt%, but decreased at 2 wt% compared to 1.5 wt%. Conclusion. When 1.5 wt% of titanium dioxide nanoparticles were added to the 3D-printed denture base resin with polishing, antifungal properties were increased.

THE EFFECT OF ND:YAG LASER IRRADIATION ON THE FORMATION OF CALCIUM FLUORIDE AND ACID RESISTANCE OF TOOTH ENAMEL (Nd:YAG 레이저 조사가 Calcium Fluoride 형성 및 치아 내산성에 미치는 영향)

  • Lee, Jae-Ho;Sohn, Heung-Kyu;Kim, Seong-Oh;Park, Kwang-Kyun;Choi, Byung-Jai
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.2
    • /
    • pp.377-398
    • /
    • 1999
  • Calcium fluoride, created by topical fluoride application, is the reservoir for fluoride ion regulated by pH in the oral environment. Therefore, the amount and the maintenance of calcium fluoride have an important role in preventing dental caries. The aim of this study is to evaluate the effect of Nd:YAG laser irradiation on the generation of calcium fluoride and the acid resistance of tooth enamel. The bovine anterior permanent teeth were prepared (n=276), and divided into following groups : no treatment (control) fluoride application alone, laser irradiation alone, laser irradiation after fluoride application, and fluoride application after laser irradiation. And each group was subdivided based on the application time of 1.23% acidulated phosphate fluoride (APF) (5 min and 30 min) and the irradiation energy of Nd:YAG laser ($20J/cm^2\;and\;40J/cm^2$). In case of fluoride application, each group was divided according to KOH treatment. Twenty three treatment conditions were made for this experiment and twelve specimens were assigned to each treatment condition. In each treatment condition, ten specimens were used for chemical analysis and two specimens were observed under SEM. In groups without treating KOH, fluoride content and the depth of enamel dissolved were measured using enamel biopsy technique. In groups with treating KOH, the amount of calcium fluoride was measured by the treatment with 1 M KOH for 24 hours and enamel biopsy was performed after KOH treatment. The results were analyzed by the fluoride content and the depth of enamel dissolved by enamel biopsy, amount and thickness of calcium fluoride, and the surface structures of enamel. The results are as follows: 1. In groups without treating KOH, the fluoride content of removed enamel showed a positive relationship with the energy density of laser when the laser irradiated before fluoride application 2. In groups without treating KOH, the depth of enamel dissolved decreased more with the combined laser and fluoride treatment than with laser or fluoride treatment, except for the case of $20J/cm^2$ laser irradiation after 5 minute fluoride application (p<0.05). 3. The amount of calcium fluoride did not increased by laser treatment with no statistical significance(p>0.05). 4. The particle size of calcium fluoride increased in case of fluoride treatment after laser irradiation, compared with fluoride application alone. In case of laser treatment after fluoride application, the particle size of calcium fluoride increased and some of the particles fused as well. 5. There were no significant differences in the fluoride content of dissolved enamel between groups without treating KOH and control group, except for the case of laser irradiation after treatment of APF for 30 minutes (p>0.05). 6. In groups with treating KOH, depth of removed enamel in the groups of combined treatment with laser and fluoride was shallower than that in fluoride application groups (p<0.05). 7. In groups without treating KOH, the relationship between fluoride content and the depth of enamel dissolved showed more negative (Spearman correlation coefficient: -0.6281) than in groups with treating KOH (Spearman correlation coefficient: -0.3792). The greater amount of calcium fluoride could be found in case where there was a significant differences of the depth of enamel dissolved between groups with and without treating KOH. From these results, it can be concluded that laser seems to be a little effects on the amount of calcium fluoride formation, but has some effect on the lowering the solubility of calcium fluoride. As the combined treatment of laser and fluoride application showed more effective acid-resistant property, more extended recall period for fluoride application can be achieved with this combined treatment in the clinic.

  • PDF

SURFACE ROUGHNESS OF COMPOSITE RESIN ACCORDING TO FINISHING METHODS (복합레진 표면의 연마방법에 따른 표면조도)

  • Min, Jeong-Bum;Cho, Kong-Chul;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.2
    • /
    • pp.138-150
    • /
    • 2007
  • The purpose of this study was to evaluate the difference of surface roughness of composite resin according to composite resin type, polishing methods, and use of resin sealant. Two hundred rectangular specimens, sized $8{\times}3{\times}2mm$, were made of Micro-new (Bisco, Inc., Schaumburg, IL, U.S.A) and Filtek Supreme (3M ESPE Dental Products, St. Paul, MN, U.S.A.), and divided into two groups; Micronew-M group, Filtek Supreme-S group. Specimens for each composite group were subdivided into five groups by finishing and polishing instruments used; M1 & S1(polyester strip), M2 & S2 (Sof-Lex disc), M3 & S3 (Enhance disc and polishing paste), M4 & S4(Astropol) and M5 & S5 (finishing bur), Polished groups were added letter B after the application of resin surface sealant (Biscover), eg, M1B and S1B. After specimens were stored with distilled water for 24hr, average surface roughness (Ra) was taken using a surface roughness tester. Representative specimens of each group were examined by FE-SEM (S-4700: Hitachi High Technologies Co., Tokyo, Japan). The data were analysed using paired t-test, ANOVA and Duncan's tests at the 0.05 probability level. The results of this study were as follows ; 1. The lowest Ra was achieved in all groups using polyester strip and the highest Ra was achieved in M5, S5 and M5B groups using finishing bur. On FE-SEM, M1 and S1 groups provided the smoothest surfaces, M5 and S5 groups were presented the roughest surfaces and voids by debonding of filler on the polished specimens. 2. There was no significant difference in Ra between Micronew and Filtek Supreme before the application of resin sealant, but Micronew was smoother than Filek Supreme after the application of resin sealant. 3. There was significant corelation between Ra of type of composite resin and polishing methods before the application of resin sealant (p=0.000), but no significant interaction between them after the application of resin sealant. On FE-SEM, most of composite resin surfaces were smooth after the application of resin sealant on the polished specimens. 4. Compared with before and after the application of resin sealant in group treated in the same composite and polishing methods, Ra of M4B and M5B was statistically lower than that of M4 and M5, and S5B was lower than that of S5, respectively (p<0.05). In conclusion, surface roughness by polishing instruments was different according to type of composite resin. Overall, polyester strip produced the smoothest surface, but finishing bur produced the roughest surface. Application of resin sealant provided the smooth surfaces in specimens polished with Enhance, Astropol and finishing bur, but not provided them in specimens polished with Sof-Lex disc.

THE EFFECT OF INTERMITTENT COMPOSITE CURING ON MARGINAL ADAPTATION (복합레진의 간헐적 광중합 방법이 변연적합도에 미치는 영향)

  • Yun, Yong-Hwan;Park, Sung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.3
    • /
    • pp.248-259
    • /
    • 2007
  • The aim of this research was to study the effect of intermittent polymerization on marginal adaptation by comparing the marginal adaptation of intermittently polymerized composite to that of continuously polymerized composite. The materials used for this study were Pyramid (Bisco Inc., Schaumburg, U.S.A.) and Heliomolar (Ivoclar Vivadent, Liechtenstein) . The experiment was carried out in class II MOD cavities prepared in 48 extracted human maxillary premolars. The samples were divided into 4 groups by light curing method: group 1- continuous curing (60s light on with no light off), group 2-intermittent curing (cycles of 3s with 2s light on & 1s light off for 90s); group 3- intermittent curing (cycles of 2s with 1s light on & 1s light off for 120s); group 4- intermittent curing (cycles of 3s with 1s light on & 2s light off for 180s). Consequently the total amount of light energy radiated was same in all the groups. Each specimen went through thermo-mechanical loading (TML) which consisted of mechanical loading (720,000 cycles, 5.0 kg) with a speed of 120 rpm for 100hours and thermocycling (6000 thermocycles of alternating water of $50^{\circ}C$ and $55^{\circ}C$). The continuous margin (CM) (%) of the total margin and regional margins, occlusal enamel (OE), vertical enamel (VE), and cervical enamel (CE) was measured before and after TML under a $\times200$ digital light microscope. Three-way ANOVA and Duncan's Multiple Range Test was performed at 95% level of confidence to test the effect of 3 variables on CM (%) of the total margin: light curing conditions, composite materials and effect of TML. In each group, One-way ANOVA and Duncan's Multiple Range Test was additionally performed to compare CM (%) of regions (OE, VE CE). The results indicated that all the three variables were statistically significant (p < 0.05). Before TML, in groups using Pyramid, groups 3 and 4 showed higher CM (%) than groups 1 and 2, and in groups using Heliomolar. groups 3 and 4 showed higher CM (%) than group 1 (p < 0.05). After TML, in both Pyramid and Heliomo)ar groups, group 3 showed higher CM (%) than group 1 (p < 0.05) CM (%) of the regions are significantly different in each group (p < 0.05). Before TML, no statistical difference was found between groups within the VE and CE region. In the OE region, group 4 of Pyramid showed higher CM (%) than group 2, and groups 2 and 4 of Heliomolar showed higher CM (%) than group 1 (p < 0.05). After TML, no statistical difference was found among groups within the VE and CE region. In the OE region, group 3 of Pyramid showed higher CM (%) than groups 1 and 2, and groups 2,3 and 4 of Heliomolar showed higher CM (%) than group 1 (p < 0.05). It was concluded that intermittent polymerization may be effective in reducing marginal gap formation.

Current Status and Perspectives in Varietal Improvement of Rice Cultivars for High-Quality and Value-Added Products (쌀 품질 고급화 및 고부가가치화를 위한 육종현황과 전망)

  • 최해춘
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.15-32
    • /
    • 2002
  • The endeavors enhancing the grain quality of high-yielding japonica rice were steadily continued during 1980s-1990s along with the self-sufficiency of rice production and the increasing demands of high-quality rices. During this time, considerably great progress and success was obtained in development of high-quality japonica cultivars and quality evaluation techniques including the elucidation of interrelationship between the physicochemical properties of rice grain and the physical or palatability components of cooked rice. In 1990s, some high-quality japonica rice cultivars and special rices adaptable for food processing such as large kernel, chalky endosperm, aromatic and colored rices were developed and its objective preference and utility was also examined by a palatability meter, rapid-visco analyzer and texture analyzer, Recently, new special rices such as extremely low-amylose dull or opaque non-glutinous endosperm mutants were developed. Also, a high-lysine rice variety was developed for higher nutritional utility. The water uptake rate and the maximum water absorption ratio showed significantly negative correlations with the K/Mg ratio and alkali digestion value(ADV) of milled rice. The rice materials showing the higher amount of hot water absorption exhibited the larger volume expansion of cooked rice. The harder rices with lower moisture content revealed the higher rate of water uptake at twenty minutes after soaking and the higher ratio of maximum water uptake under the room temperature condition. These water uptake characteristics were not associated with the protein and amylose contents of milled rice and the palatability of cooked rice. The water/rice ratio (in w/w basis) for optimum cooking was averaged to 1.52 in dry milled rices (12% wet basis) with varietal range from 1.45 to 1.61 and the expansion ratio of milled rice after proper boiling was average to 2.63(in v/v basis). The major physicochemical components of rice grain associated with the palatability of cooked rice were examined using japonica rice materials showing narrow varietal variation in grain size and shape, alkali digestibility, gel consistency, amylose and protein contents, but considerable difference in appearance and texture of cooked rice. The glossiness or gross palatability score of cooked rice were closely associated with the peak, hot paste and consistency viscosities of viscosities with year difference. The high-quality rice variety "IIpumbyeo" showed less portion of amylose on the outer layer of milled rice grain and less and slower change in iodine blue value of extracted paste during twenty minutes of boiling. This highly palatable rice also exhibited very fine net structure in outer layer and fine-spongy and well-swollen shape of gelatinized starch granules in inner layer and core of cooked rice kernel compared with the poor palatable rice through image of scanning electronic microscope. Gross sensory score of cooked rice could be estimated by multiple linear regression formula, deduced from relationship between rice quality components mentioned above and eating quality of cooked rice, with high probability of determination. The $\alpha$-amylose-iodine method was adopted for checking the varietal difference in retrogradation of cooked rice. The rice cultivars revealing the relatively slow retrogradation in aged cooked rice were IIpumbyeo, Chucheongyeo, Sasanishiki, Jinbubyeo and Koshihikari. A Tonsil-type rice, Taebaegbyeo, and a japonica cultivar, Seomjinbyeo, showed the relatively fast deterioration of cooked rice. Generally, the better rice cultivars in eating quality of cooked rice showed less retrogradation and much sponginess in cooled cooked rice. Also, the rice varieties exhibiting less retrogradation in cooled cooked rice revealed higher hot viscosity and lower cool viscosity of rice flour in amylogram. The sponginess of cooled cooked rice was closely associated with magnesium content and volume expansion of cooked rice. The hardness-changed ratio of cooked rice by cooling was negatively correlated with solids amount extracted during boiling and volume expansion of cooked rice. The major physicochemical properties of rice grain closely related to the palatability of cooked rice may be directly or indirectly associated with the retrogradation characteristics of cooked rice. The softer gel consistency and lower amylose content in milled rice revealed the higher ratio of popped rice and larger bulk density of popping. The stronger hardness of rice grain showed relatively higher ratio of popping and the more chalky or less translucent rice exhibited the lower ratio of intact popped brown rice. The potassium and magnesium contents of milled rice were negatively associated with gross score of noodle making mixed with wheat flour in half and the better rice for noodle making revealed relatively less amount of solid extraction during boiling. The more volume expansion of batters for making brown rice bread resulted the better loaf formation and more springiness in rice breed. The higher protein rices produced relatively the more moist white rice bread. The springiness of rice bread was also significantly correlated with high amylose content and hard gel consistency. The completely chalky and large grain rices showed better suitability far fermentation and brewing. The glutinous rice were classified into nine different varietal groups based on various physicochemical and structural characteristics of endosperm. There was some close associations among these grain properties and large varietal difference in suitability to various traditional food processing. Our breeding efforts on improvement of rice quality for high palatability and processing utility or value-adding products in the future should focus on not only continuous enhancement of marketing and eating qualities but also the diversification in morphological, physicochemical and nutritional characteristics of rice grain suitable for processing various value-added rice foods.ice foods.