DOI QR코드

DOI QR Code

Influence of Artificial Rainfall on Wheat Grain Quality During Ripening by Using the Speed-breeding System

세대단축시스템을 이용한 국내 밀 품종의 등숙기 강우에 의한 품질변이 평가

  • 박현진 (농촌진흥청 국립식량과학원 논이용작물과) ;
  • 차진경 (농촌진흥청 국립식량과학원 논이용작물과) ;
  • 이소명 (농촌진흥청 국립식량과학원 논이용작물과) ;
  • 권영호 (농촌진흥청 국립식량과학원 논이용작물과) ;
  • 최지수 (농촌진흥청 국립식량과학원 논이용작물과) ;
  • 오기원 (농촌진흥청 국립식량과학원 논이용작물과) ;
  • 이종희 (농촌진흥청 국립식량과학원 논이용작물과)
  • Received : 2023.07.03
  • Accepted : 2023.07.26
  • Published : 2023.09.01

Abstract

Wheat (Triticum aestivum L.) is an important crop in Korea, with a per capita consumption of 31.6 kg in 2019. In the southern region, wheat is grown after paddy rice, and it is harvested during the rainy season in mid-June. This timing, in combination with high humidity and untimely rainfall, activates the enzyme alpha-amylase, which breaks down starch in the wheat grains. As a result, sprouted grains have lower quality and value for flour. However, seeds that absorb water before sprouting are expected to maintain better quality. The aim of the study was to identify the critical period during wheat maturation when rainfall has the greatest impact on grain quality, to prevent price declines due to quality deterioration. Two wheat cultivars, Jokyoung and Hwanggeumal, were grown in a speed breeding room, and artificial rainfall was applied at different times after heading (30, 35, 40, 45, 50, and 55 days). The proportion of vitreous grains decreased from 40 to 55 days after heading (DAH). Both cultivars had chalky grain sections from 35 DAH, with Hwanggeumal having a higher proportion of vitreous grains. Starch degradation was observed using FE-SEM (Field Emission Scanning Electron Microscope) at 40 DAH for Jokyoung and 50 DAH for Hwanggeumal. Color measurements indicated increased L and E values from 40 DAH, with rain treatment at 55 DAH leading to a significant increase in L values for both cultivars. Ash content increased at 45 DAH, whereas SDSS decreased at 35 DAH. Overall, grain quality from 40 DAH until harvest was found to be affected to the greatest extent by direct exposure of the spikes to moisture. Red wheat showed better quality than white wheat. These findings have implications for the cultivation of high-quality wheat and can guide future research efforts in this area.

밀 등숙기 강우의 영향을 분석하기 위해 백립계인 조경과 적립계인 황금알을 이용하여 출수기 이후 시기별 인공강우처리에 의한 품질을 분석하였다. 그 결과, 종자 단면은 출수기 이후 35일부터 분상질화되기 시작하였고, 출수기 이후 40일부터 ΔL값과 ΔE*ab 값이 증가하기 시작하였다. 출수기 이후 55일에 조경은 종자 단면 전체가 분상질화 되었지만, 황금알은 초자질 비율이 높게 유지되어 품질변이에 강할 것으로 예상되었다. 주사전자현미경을 이용한 종자 내 전분입자 촬영 결과, 조경은 출수기 이후 40일부터, 황금알은 50일부터 A-, B-granule이 분해되는 것을 관찰할 수 있었다. 종자 품질분석 결과, 단백질 함량은 처리시기별 경향성을 나타내지 않았으나, 회분은 출수기 이후 45일 처리부터 유의하게 증가하였고 침전가는 출수기 이후 35일부터 감소하였다. 따라서 밀 등숙 전반기에는 강우의 영향을 적게 받지만, 출수기 이후 40~45일부터는 강우에 의한 품질변이에 취약할 것으로 예상된다. 또한 적립계 밀 품종은 백립계에 비하여 수발아에 강한 것으로 알려져 있으며, 본 연구에서도 황금알이 조경에 비해 등숙 후반기 강우에도 품질이 높게 유지되는 것으로 나타났다. 따라서 밀 종피색와 품질변이 간 관계에 대한 추가적인 검토가 필요할 것으로 판단된다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 연구사업(연구개발과제명: 경질밀의 등숙기 강우와 작부체계 유형에 따른 품질변이 분석, 연구과제개발번호: PJ016043012023)의 지원에 의해 이루어진 것임.

References

  1. AACC (American Association of Cereal Chemists International). 2010. Approved Methods of Analysis, 11th Ed. Methods 08-01.01, 26-31.01, 44-15.02. 46-30.01 Available online only. AACCI: St. Paul, MN, USA.
  2. Asseng, S., J. R. Guarin, M. Raman, O. Monje, G. Kiss, D. D. Despommier, F. M. Meggers, and P. P. Gauthier. 2020. Wheat yield potential in controlled-environment vertical farms. P. Natl. Acad. Sci. 32 : 19131-19135. https://doi.org/10.1073/pnas.2002655117
  3. Baasandorj, T, J. B. Ohm, and S. Simsek. 2015. Effect of dark, hard, and vitreous kernel content on protein molecular weight distribution and on milling and breadmaking quality characteristics for hard spring wheat samples from diverse growing regions. Cereal Chem. 92(6) : 570-577. https://doi.org/10.1094/CCHEM-12-14-0249-R
  4. Bellary, A. N., A. R. Indiramma, M. Prakash, R. Baskaran, and N. K. Rastogi. 2016. Anthocyanin infused watermelon rind and its stability during storage. IFSET 33 : 554-562. https://doi.org/10.1016/j.ifset.2015.10.010
  5. Biddulph, T. B., J. A. Plummer, T. L. Setter, and D. J. Mares. 2007. Influence of high temperature and terminal moisture stress on dormancy in wheat (Triticum aestivum L.). Field Crops Res. 103(2) : 139-153.
  6. Boyer, J. S. 1982. Plant productivity and environment. Science 218 : 443-448. https://doi.org/10.1126/science.218.4571.443
  7. Braun, H. J., G. Atlin, and T. Payne. 2010. Multi-location testing as a tool to identify plant response to global climate change. In : Reynolds MP, editor. Climate change and crop production. Wallingford : Center for Agriculture and Biosciences International 115-138.
  8. Cha, J. K., J. H. Lee, S. M. Lee, J. M. Ko, and D. Shin. 2020. Heading date and growth character of Korean wheat cultivars by controlling photoperiod for rapid generation advancement. Korean J. Breed. Sci. 52 : 20-24. https://doi.org/10.9787/KJBS.2020.52.1.20
  9. Cha, J. K., K. O'Connor, S. Alahmad, J. H. Lee, E. Dinglasan, H. Park, S. M. Lee, D. Hirsz, S. W. Kwon, Y. Kwon, K. M. Kim, J. M. Ko, L. T. Hickey, D. Shin, and L. E. Dixon. 2022. Speed vernalization to accelerate generation advance in winter cereal crops. Mol. Plant 15(8) : 1300-1309. https://doi.org/10.1016/j.molp.2022.06.012
  10. Chaudhary, N., P. Dangi, and B. S. Khatkar. 2016. Assessment of molecular weight distribution of wheat gluten proteins for chapatti quality. Food Chem. 199 : 28-35. https://doi.org/10.1016/j.foodchem.2015.11.106
  11. Delwiche, S. R., B. T. Vinyard, and A. D. Bettge. 2015. Repeatability precision of the falling number procedure under standard and modified methodologies. Cereal Chem. 92 : 177-184. https://doi.org/10.1094/CCHEM-07-14-0156-R
  12. Dexter, J. E. and N. M. Edwards. 2001. The implications of frequently encountered grading factors on the processing quality of durum wheat. Tec. Molitoria 52 : 553-566.
  13. Dexter, J. E., B. A. Marchylo, A. W. MacGregor, and R. Tkachuk. 1989. The structure and protein composition of vitreous, piebald, and starchy durum wheat kernels. J. Cereal Sci. 10(1) : 19-32. https://doi.org/10.1016/S0733-5210(89)80031-1
  14. Dong, K., P. Ge, C. Ma, K. Wang, X. Yan, L. Gao, X. Li, J. Liu, W. Ma, and Y. Yan. 2012. Albumin and globulin dynamics during grain development of elite Chinese wheat cultivar Xiaoyan 6. J. Cereal Sci. 56(3) : 615-622. https://doi.org/10.1016/j.jcs.2012.08.016
  15. FAOSTAT. 2020. Database collections : Food and Agriculture Organization of the United Nations; Crops and livestock products. Available from : http://www.fao.org/faostat/en/#data/QC.
  16. Fowler, D. B., J. Brydon, B. A. Darroch, M. H. Entz, and A. M. Johnston. 1990. Environment and genotype influence on grain protein concentration of wheat and rye. Agron. J. 82 : 655-664. https://doi.org/10.2134/agronj1990.00021962008200040002x
  17. Groos, C., G. Gay, M. R. Perretant, L. Gervais, M. Bernard, F. Dedryver, and G. Charmet. 2002. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white×red grain bread-wheat cross. Theor. Appl. Genet. 104 : 39-47. https://doi.org/10.1007/s001220200004
  18. Guzman, C., S. Mondal, V. Govindan, J. E. Autrique, G. Posadas-Romano, F. Cervantes, J. Crossa, M. Vargas, R. P. Singh, and R. J. Pena. 2016. Use of rapid tests to predict quality traits of CIMMYT bread wheat genotypes grown under different environments. LWT-Food Science and Technology 69 : 327-333. https://doi.org/10.1016/j.lwt.2016.01.068
  19. Hatcher, D. W., and S. J. Symons. 2000. Influence of sprout damage on oriental noodle appearance as assessed by image analysis. Cereal Chem. 77 : 380-387. https://doi.org/10.1094/CCHEM.2000.77.3.380
  20. Hirano, J. 1976. Effects of rain in ripening period on the grain quality of wheat. Japan Agricultural Research Quarterly, Ibaraki 10 : 168-173.
  21. Hughes, N., D. Galeano, S. Hatfield-Dodds. 2019. The effects of drought and climate variability on Australian farms. ABARES Insights 6 : 11.
  22. ICC (International Association for Cereal Chemistry). 1995. Determination of the "Falling Number" according to Hagberg - as a measure of the degree of alpha-amylase activity in grain and flour. International Association for Cereal Science and Technology.
  23. Jiang, G. L. and S. Xiao. 2005. Factorial cross analysis of pre-harvest sprouting resistance in white wheat. Field Crop. Res. 91 : 63-69. https://doi.org/10.1016/j.fcr.2004.06.001
  24. Jimenez, N., D. Mares, K. Mrva, C. Lizana, S. Contreras, A. R. Schwember. 2017. Susceptibility to preharvest sprouting of Chilean and Australian elite cultivars of common wheat. Crop Sci. 57(1) : 462-474. https://doi.org/10.2135/cropsci2016.02.0138
  25. Johansson, E., A. H. Malik, A. Hussain, F. Rasheed, W. R. Newson, T. Plivelic, M. S. Hedenqvist, M. Gallstedt, and R. Kuktaite. 2013. Wheat gluten polymer structures : the impact of genotype, environment, and processing on their functionality in various applications. Cereal Chem. 90(4) : 367-376. https://doi.org/10.1094/CCHEM-08-12-0105-FI
  26. Kim, K. H., C. S. Kang, J. C. Park, S. H. Shin, J. N. Hyun, C. S. Park. 2012. Evaluation of Pre-harvest Sprouting in Korean Wheat Cultivar. Korean. J. Breed. Sci. 44(4) : 526-537. https://doi.org/10.9787/KJBS.2012.44.4.526
  27. King, R. W. 1989. Physiology of sprouting resistance. Preharvest field sprouting in cereals. CRC Press. pp. 27-60.
  28. Lin, M., D. Zhang, S. Liu, G. Zhang, J. Yu, A. K. Fritz, G. Bai. 2016. Genome-wide association analysis on pre-harvest sprouting resistance and grain color in US winter wheat. BMC Genomics 17(1) : 1-16.
  29. Mares, D. J. 1984. Temperature dependence of germinability of wheat (Triticum aestivum L.) grain in relation to pre-harvest sprouting. Crop Pasture Sci. 35 : 115-128. https://doi.org/10.1071/AR9840115
  30. Mares, D. J. 1993. Pre-harvest sprouting in wheat. I. Influence of cultivar, rainfall and temperature during grain ripening. Aust. J. Agric. Res. 44 : 1259-1272. https://doi.org/10.1071/AR9931259
  31. Mares, D. J. and K. Mrva. 2001. Mapping quantitative trait loci associated with variation in grain dormancy in Australian wheat. Crop Pasture Sci. 52 : 1257-1265. https://doi.org/10.1071/AR01049
  32. Mares, D. J. and K. Mrva. 2014. Wheat grain preharvest sprouting and late maturity alpha-amylase. Planta 240 : 1167-1178. https://doi.org/10.1007/s00425-014-2172-5
  33. Metzger, R. J. and B. A. Silbaugh. 1970. Location of genes for seed coat color in hexaploid wheat, Triticum aestivum L. Crop Sci. 10 : 495-496. https://doi.org/10.2135/cropsci1970.0011183X001000050012x
  34. Mukade, K., M. Kamio, and K. Hosoda. 1973. The acceleration of generation advancement in breeding rust-resistant wheat. Proc. 4th int. Wheat Genet. Symp. pp. 439-444.
  35. Oury, F. X., P. Lasme, C. Michelet, M. Rousset, and J. Abecassis. 2015. Lullien-Pellerin V. Relationships between wheat grain physical characteristics studied through near-isogenic lines with distinct puroindoline-b allele. Theoretical and Applied Genetics 128(5) : 913-29.
  36. Parish, J. A. and N. J. Halse. 1968. Effects of light, temperature, and rate of desiccation on translucency in wheat grain. Austr. J. Agric. Res. 19 : 365-372. https://doi.org/10.1071/AR9680365
  37. Romano, G., L. Baranyai, K. Gottschalk, and M. Zude. 2008. An approach for monitoring the moisture content changes of drying banana slices with laser light backscattering images. Food Bioproc. Tech. 1(4) : 410-414. https://doi.org/10.1007/s11947-008-0113-7
  38. Samson, M. F., F. Mabille, R. Cheret, J. Abecassis, and M. H. Morel. 2005. Mechanical and physicochemical characterization of vitreous and mealy durum wheat endosperm. Cereal Chem. 82(1) : 81-87. https://doi.org/10.1094/CC-82-0081
  39. Shang, J., L. Li, B. Zhao, M. Liu, and X. Zheng. 2020. Comparative studies on physicochemical properties of total, A-and B-type starch from soft and hard wheat varieties. Int. J. Biol. Macromol. 154 : 714-723. https://doi.org/10.1016/j.ijbiomac.2020.03.150
  40. Sharma, G. C., A. D. Paul, and J. A. Bietz. 1983. Nitrogen fertilization effects and anatomical, protein, and amino acid characteristics of yellow berry in triticale. Crop Sci. 23 : 699-703. https://doi.org/10.2135/cropsci1983.0011183X002300040023x
  41. Shiferaw, B., M. Smale, H. J. Braun, E. Duveiller, M. Reynolds, and G. Muricho. 2013. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 5 : 291-317. https://doi.org/10.1007/s12571-013-0263-y
  42. Simmonds, D. H. 1974. Chemical basis of hardness and vitreosity in the wheat kernel. Bakers Dig. 48 : 16-29.
  43. Simsek, S., J. B. Ohm, H. Lu, M. Rugg, W. Berzonsky, M. S. Alamri, and M. Mergoum. 2014. Effect of pre-harvest sprouting on physicochemical properties of starch in wheat. Foods 3(2) : 194-207. https://doi.org/10.3390/foods3020194
  44. Sorenson, B. and J. Wiersma. 2004. Sprout damaged wheat, crop insurance and quality concerns. Minn. Crop News Arch, Minneapolis. p. 14.
  45. Sorrells, M. and J. Sherman. 2007. Facts : Pre-Harvest Sprouting. MAS Wheat. Available online : https://maswheat.ucdavis.edu/.
  46. Turnbull, K. M. and S. Rahman. 2002. Endosperm texture in wheat. J. Cereal Sci. 36(3) : 327-337. https://doi.org/10.1006/jcrs.2002.0468
  47. Uthayakumaran, S., P. Gras, F. Stoddard, and F. Bekes. 1999. Effect of varying protein content and glutenin-to-gliadin ratio on the functional properties of wheat dough. Cereal Chem. 76 : 389-394. https://doi.org/10.1094/CCHEM.1999.76.3.389
  48. Vetch, J. M., R. N. Stougaard, J. M. Martin, and M. J. Giroux. 2019. Revealing the genetic mechanisms of pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.). Plant Sci. 281 : 180-185. https://doi.org/10.1016/j.plantsci.2019.01.004
  49. Wahlund, K. G., M. Gustavsson, F. MacRitchie, T. Nylander, and L. Wannerberger. 1996. Size characterisation of wheat proteins, particularly glutenin, by asymmetrical flow field-flow fractionation. J. Cereal Sci. 23 : 113-119. https://doi.org/10.1006/jcrs.1996.0011
  50. Weightman, R. M., S. Millar, J. Alava, M. J. Foulkes, L. Fish, and J. W. Snape. 2008. Effects of drought and the presence of the 1BL/RS translocation on grain vitreosity, hardness and protein content in winter wheat. J. Cereal Sci. 47 : 457-468. https://doi.org/10.1016/j.jcs.2007.05.011
  51. Xiao, S. H., X. Y. Zhang, C. S. Yan, and H. Lin. 2002. Germplasm improvement for preharvest sprouting resistance in Chinese white-grained wheat : an overview of the current strategy. Euphytica 126 : 35-38. https://doi.org/10.1023/A:1019679924173
  52. Zanetti, S., M. Winzeler, M. Keller, B. Keller, and M. Messmer. 2000. Genetic analysis of pre-harvest sprouting resistance in a wheat spelt cross. Crop Sci. 40 : 1406-1417. https://doi.org/10.2135/cropsci2000.4051406x