• Title/Summary/Keyword: 주면하중전이거동

Search Result 26, Processing Time 0.024 seconds

FE Analysis of Rock-Socketed Drilled Shafts Using Load Transfer Method (유한요소해석을 통한 암반에 근입된 현장타설말뚝의 하중전이거동 분석)

  • Seol, Hoon-Il;Jeong, Sang-Seom;Kim, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.33-40
    • /
    • 2008
  • The load distribution and deformation of rock-socketed drilled shafts subjected to axial loads are evaluated by a load-transfer method. The emphasis is on quantifying the effect of coupled soil resistance in rock-socketed drilled shafts using the 2D elasto-plastic finite element analysis. Slippage and shear load transfer behavior at the pile-soil interface are investigated by using a user-subroutine interface model (FRlC). It is shown that the coupled soil resistance provides the influence of pile toe settlement as the shaft resistance is increased to an ultimate limit state. The results show that the coupling effect is closely related to the value of pile diameter over rock mass modulus (D/$E_{mass}$) and the ratio of total shaft resistance against total applied load ($R_s$/Q). Through comparisons with field case studies, the 2D numerical analysis reseanably presented load transfer of pile and coupling effect due to the transfer of shaft shear loading, and thus represents a significant improvement in the prediction of load deflections of drilled shafts.

Shear Load-Transfer Function of Rock-Socketed Drilled Shafts Considering Borehole Roughness (굴착면 거칠기를 고려한 암반 근입 현장타설말뚝의 주면 하중전이함수 제안)

  • Seol, Hoon-Il;Woo, Sang-Yoon;Han, Keun-Taek;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.23-35
    • /
    • 2006
  • Shear load transfer characteristics of rock-socketed drilled shafts were analyzed. The constant normal stiffness (CNS) direct shear tests were performed to identify the major influencing factors of shaft resistance, i.e., unconfined compressive strength, borehole roughness, normal stiffness, initial confining stress, and material properties. Based on the CNS tests, shear load transfer function of drilled shafts in rocks is proposed using borehole roughness and the geological strength index (GSI), which indicates discontinuity and surface condition of rock mass in Hoek-Brown criterion (1997). The proposed load-transfer function was verified by the load test results of seven rock-socketed drilled test shafts subjected to axial loads. Through comparisons of the results of load tests, it is found that the load-transfer function by the present study is in good agreement with the general trend observed by in situ measurements, and thus represents a significant improvement in the prediction of load transfer of drilled shafts.

Evaluation of Skin Friction on Large Drilled Shaft (대구경 현장타설말뚝의 주면 마찰력 평가)

  • Hong Won-Pyo;Yea Geu-Guwen;Lee Jae-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.93-103
    • /
    • 2005
  • Both static pile load test with load transfer measuring system and the pile dynamic load test are performed to estimate the skin friction and behavior characteristics of a large drilled shaft. And the numerical modeling of large drilled shaft is performed by applying the FDM program. Since the magnitude of friction resistance depends on the relative displacement between soil and shaft, load and displacement at the arbitrary depth along the large drilled shaft are estimated to analyze the correlation. According to the measuring results of load transfer, unit skin friction along the large drilled shaft was fully mobilized at gravel layer in the middle of shaft and the frictional resistance transmitted to bedrock was relatively small. Also, even for the same drilled shaft, the results of PDA and static load test are different with each other and the difference is discussed.

Load-Transfer Analysis by Considering Coupled Soil Resistance (말뚝-지반 상호작용을 고려한 수정된 하중전이함수법 제안)

  • Seol, Hoon-Il;Jeong, Sang-Seom;Kim, Young-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.359-366
    • /
    • 2008
  • The load distribution and deformation of pile subjected to axial loads are evaluated by a load-transfer method. The emphasis is on quantifying the effect of coupled soil resistance that is closely related to the ratio of pile diameter to soil modulus $(D/E_s)$ and the ratio of total shaft resistance against total applied load $(R_s/Q)$, in rock-socketed drilled shafts using the coupled load-transfer method. The proposed analytical method that takes into account the soil coupling effect was developed using a modified Mindlin's point load solution. Through comparisons with field case studies, it was found that the proposed method in the present study estimated reasonable load transfer behavior of pile and coupling effects due to the transfer of shaft shear loading, and thus represents a significant improvement in the prediction of load deflections of drilled shafts.

Characteristics of Load-Settlement Behaviour for Embeded Piles Using Load-Transfer Mechanism (하중전이기법을 이용한 매입말뚝의 하중-침하 거동특성)

  • Oh, Se Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.4
    • /
    • pp.51-61
    • /
    • 2001
  • A series of model tests and analyses by load transfer function were performed to study load-settlement behaviour with relative compaction ratio of soil and embeded depth of pile. In the model tests, embeded depth ratio(L/D) of pile were installed 15, 20, 25 and relative compaction of soil(RC) is 85%, 95% and then cement were injected at around perimeter of pile. For analysis of embedded pile, the paper were compared results of model tests with analysis results by Vijayvergiya model and Castelli model, Gwizdala model of elastic plasticity-perfect plastic model and then the fitness load transfer mechanism was proposed to predict load-settlement behaviour of embeded pile. The analysis results of predicted bearing capacity by load transfer function, ultimate bearing capacity of embeded pile were approached to measured value and behaviour of initial load-settlement curve were estimated that load transfer function by Castelli were similar to measured value. The result of axial load analysis of bored pile shows that skin friction estimated by load transfer mechanism is investigated more a little than that of measured values.

  • PDF

Shear Load Transfer Characteristics of Friction Piles in Deep Soft Clay (대심도 연약지반상 마찰말뚝의 주면하중전이 거동 분석)

  • Moon, Joon-Shik;Paek, Jin-Yeol;Jeong, Sang-Seom;Ko, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.55-67
    • /
    • 2011
  • The shear load distribution and deformation of offshore friction piles are investigated using experimental tests and a numerical analysis. Special attention is given to the soil-pile interaction of axially loaded pile. A framework for determining the f-w curve is proposed based on both theoretical analysis and experimental load test data base. A numerical analysis that takes into account the proposed f-w curves was performed for major parameters on pile-soil interaction such as the pile diameter, the pile length, and the soil condition. Based on the analysis, it is shown that the proposed f-w method is capable of predicting the behavior of a friction pile in deep soft clay. Through comparisons with case histories and finite element results, it is found that the proposed f-w curves are more appropriate and realistic m representing the pile-soil interaction of axially loaded piles in deep soft clay than that of existing f-w method.

Load-Settlement Behavior of Rock-socketed Drilled Shafts by Bi-directional Pile Load Test (양방향 말뚝선단재하시험에 의한 암반근입 현장타설말뚝의 하중-침하거동 분석)

  • Seol, Hoon-Il;Jeong, Sang-Seom;Han, Keun-Taek;Kim, Jae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.61-70
    • /
    • 2008
  • Load settlement behaviors and load transfer characteristics of rock-socketed pile subjected bi-directional load at pile tip were investigated using bi-directional pile load tests (BD PLT) performed on ten large-diameter drilled shafts at four sites. Based on test results, additional pile-toe displacement ($w_{bs}$) by coupled soil resistance was analyzed, and thus equivalent top loaded load-settlement curve of pile subjected bi-directional load was proposed by taking into account the coupled soil resistance. Through comparisons with field case studies, it is found that for test piles there exists effect of coupled soil resistance, which is represented by wbs, and thus an equivalent curve obtained by existing uncoupled methods can overestimate bearing capacity of piles by BD PLT. On the other hand, the analysis by the proposed method with soil coupling effect has a considerably larger settlement when compared with the results by uncoupled load transfer method and estimates reasonable load-settlement behaviors of test piles. In case of pile socketed in high strength rocks, however, effects of coupled soil resistance can be neglected.

Proposed Shear Load-transfer Curves for Prebored and Precast Steel Piles (강관 매입말뚝의 주면 하중전이 곡선(t-z) 제안)

  • Kim, Do-Hyun;Park, Jong-Jeon;Chang, Yong-Chai;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.43-58
    • /
    • 2018
  • In this study, the load-transfer behavior along the shaft of the prebored and precast piles was investigated by pile loading tests. Special attention was given to quantifying the skin frictions developed between the pile-soil interfaces of the 14 instrumented test piles. Based on this detailed field tests, the load - settlement curves and axial load distributions of piles were obtained and the load-transfer curves (t-z curves) for the test piles were proposed. As such, it is found that the test results show two different load transfer behaviors; ductile and brittle behavior curves. The corresponding t-z curves are proposed based on the hyperbolic- and sawtooth-shape, respectively. By validating the accuracy of the proposed curves, it is also found that the prediction results based on the proposed load-transfer curve are in good agreement with the general trends observed by the field loading tests.

Analysis of a Bi-directional Load Test Result on tong PHC Piles in Consideration of Residual Load (잔류하중을 고려한 장대 PHC 말뚝의 양방향 재하시험 결과해석)

  • Kim, Sung-Ryul;Chung, Sung-Gyo;Lee, Bong-Yeol
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.85-93
    • /
    • 2008
  • For long piles driven in deep clay deposits, it is difficult to estimate the ultimate bearing capacity due to large resistance induced by long embedded depth, and also the load transfer curve due to large residual load induced by negative skin friction, even with the performance of pile load tests. In this research, a hi-directional load test on a PHC pile driven in deep soft deposit was performed in order to evaluate the tip and shaft resistances separately, which are feasible to estimate the ultimate bearing capacity of the pile. Residual load of the pile was determined by continuous monitoring of pile strains after the pile installation. The true resistance and true load-movement curve of the pile were properly estimated by taking account of the residual load. A model far behavior of the shaft resistance vs. movement was also proposed, which includes the effects of residual load based on the experiment. Consequently, it was proved that the residual load should be taken into consideration for correctly analyzing load test results of piles in deep clay deposits.

Load Transfer Analysis of Drilled Shafts Reinforced by Soil Nails (Soil Nail로 보강된 현장타설말뚝의 하중전이 분석)

  • 정상섬;함홍규;이대수
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.37-47
    • /
    • 2004
  • In this study the load distribution and settlement of soil nailed-drilled shafts subjected to axial loads were evaluated by a load-transfer approach. Special attention was given to the reinforcing effects of soil nails placed from the shafts to surrounding weathered- and soft-rocks based on an analytical study and a numerical analysis. An analytical method that takes into account the number, the positions on the shaft, the grade, and the inclination angle at which the soil nails are placed was developed using a load transfer curve methods. Through the comparative study, it is found that the prediction by present approach simulates well the general trends observed by the in-situ measurements and numerical results SHAFT 4.0. It is also found that the reinforcing effects of soil nails increases in the order of hard-, soft- and weathered-rock since the ultimate shaft resistance far large bored piles in weathered rocks is fully mobilized after small displacements of the shaft, compared to the soft- and hard-rocks and subsequently the side resistance is transferred down to the soil nails.