• Title/Summary/Keyword: 주름형상

Search Result 71, Processing Time 0.032 seconds

A Study on Structural Analysis for the Bellows of Automotive Exhaust System (승용차 배기계 벨로우즈의 구조해석에 관한 연구)

  • Kim, Jin-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1192-1196
    • /
    • 2010
  • As the space for installation of automotive exhaust system is limited, the space should be optimized with relation to the endurance and shape of the system. Geometric nonlinear analysis was used and deflection of bellows was assumed 6mm. Obtained results are as follows; (1) The Von-Mises stress of bellows is increased with increase of thickness or radius of bellows linearly. (2) As the principal stress varies according to the radius of convolution, it is necessary to decide the optimal radius of convolution.

A Study on Forming of Silencer Case Using Virtual Tryout Method (가상 트라이아웃을 이용한 소음기 케이스 성형에 관한 연구)

  • Ko, Dae-Lim;Lee, Kyung-Sick
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1167-1173
    • /
    • 2010
  • Forming of a silencer case was studied using a virtual tryout method. First, the appropriate blank shape was determined by cutting off the undeformed part of the rectangular blank. Then drawbeads were designed such that the formation of wrinkles on the shoulders and pipe connection can be prevented. Finally, the shape bead was designed such that fracture and formation of wrinkles around the pipe connection can be avoided. The prototype of the silencer case was manufactured in accordance with the conditions of the virtual tryout process. By comparing the formability of the prototype with the results of finite element analysis, it was found that the forming of the prototype agreed well with the results of analysis.

Numerical Study on the Effect of a Groove of D-type on Internal Flow and Pressure Drop in a Corrugated Pipe (주름관 내부 유동과 압력강하에 대한 D형 그루브의 영향에 관한 수치해석)

  • Hong, Ki Bea;Kim, Dong Woo;Ryou, Hong Sun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • A corrugated pipe is widely used in firefighting equipment and sprinkler pipes because of its elasticity, which is less damaged by deformation and convenient facilities. However, the corrugated shape of the wall results in complex internal turbulent flow, and it is difficult to predict the pressure drop, which is an important design factor for pipe flow. The pressure drop in the corrugated tube is a function of the shape factors of the pipe wall, such as groove height, length, and pitch. Existing studies have only shown a study of pressure drop due to length changes in the case of D-shaped tubes with less than 5 pitch (P) and height (K) of the rectangular grooves in the tube. In this work, we conduct a numerical study of pressure drop for P/Ks with length and height changes of 2.8, 3.5 and 4.67 with Re Numbers of 55,000, 70,000 and 85,000. The pressure drop in the corrugated tube was interpreted to decrease with smaller P/K. We show that the pressure drop is affected by the change in the groove aspect ratio, and the increase in the height of the groove increases the recirculation area, and the larger the Reynolds number, the greater the pressure drop.

Experimental Study on Flexural Structural Performance of Sinusoidal Corrugated Girder (파형 웨브주름 보의 휨성능에 관한 실험적 연구)

  • Kim, Jong Sung;Chae, Il Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.503-511
    • /
    • 2015
  • In long span steel structure, the plate girder reinforced with stiffeners are commonly used. When choosing the cross section with deep depth of girder as well as narrow width, however, out of plane buckling can be a problem due to web slenderness. In an effort to solve this issue, current study determined the applicability of using corrugated web girder with deep depth as bending member, which is generally being utilized in both factory and warehouse nationwide. To accomplish this, we performed the loading test of H-shaped beam with sinusoidal corrugated web. Corrugated web CP-2.3 specimen exhibited 12% less maximal bending strength but CP-3.2 specimen exerted 24% increase in strength compared to plate web P-4.5. this result indicates that corrugated web provides enough strength even with unfavorable width-thickness ratio of plate. And bending as well as shear strength estimated by the Eurocode (EN 1993-1-5) were compared with both bending strength by loading test and shear strength estimated by KBC2009. In case of eurocode, increase in plate thickness did not help in bending performance improvement. moreover, shear performance was sensitive to the thickness of the web folds and the shape of the web plate.

Effect on Material Property on the Frature Propagation Behavior (재료의 취성과 연성이 균열의 진전에 미치는 영향)

  • Jeong, Jaeyeon;Woo, Kyeongsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.919-926
    • /
    • 2014
  • In this paper, the effect of material properties on fracture behavior was studied using cohesive zone model and extended finite element method. The rectangular tensile specimen with a central inclined initial crack was modeled by plane stress elements. In the CZM modeling, cohesive elements were inserted between every bulk elements in the predicted crack propagation region before analysis, while in the XFEM the enrichment to the elements was added as needed during analysis. The crack propagation behavior was examined for brittle and ductile materials. For thin specimen configuration, wrinkle deformation was accounted for by geometrically nonlinear post-buckling analysis and the effect of wrinkling on the crack propagation was investigated.

Thermo-Hydraulic Characteristics of Two-Dimensional Wavy Channels with Different Shape Parameters (2차원 파형 채널의 형상변화에 따른 열유동 특성)

  • Kim, Ki-Wan;Kim, Sun-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Two-dimensional laminar numerical analyses were carried out for investigating the thermo-hydraulic characteristics of wavy channels with different shape parameters ($0.5{\leq}{\in}{\leq}1.5$, $0.1{\leq}{\gamma}{\leq}0.4$). PAO (polyalphaolefin), which is used for electronics cooling, is considered as the working fluid. In addition, constant properties, periodically developed flow, and uniform channel wall temperature conditions are assumed. Streamline and temperature fields, isothermal Fanning friction factors, and Colburn factors are presented for different Reynolds numbers in the laminar region ($1{\leq}Re{\leq}1000$). The results show that heat transfer is enhanced when the channel corrugation ratio (${\gamma}$) is large and channel spacing ratio (${\in}$) is small in the low Reynolds number region (Re < 50) and when ${\in}$ and ${\gamma}$ are large in the high Reynolds number region ($Re{\geq}50$).

Application of Reverse Engineering on Sheet Metal Forming Analysis (Reverse Engineering 기술의 판재 성형 해석에의 응용)

  • Han S. S.;Kim D. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.303-309
    • /
    • 2005
  • Reverse Engineering 기술을 이용하여 금형 형상을 측정하고 이를 이용하여 자동차 주요 대형 성형 부품에 대하여 유한 요소 성형 해석을 수행하여 성형 인자들의 영향에 대하여 분석한 결과 다음과 같은 결론을 얻었다. (1) Reverse Engineering 기술의 사용은 대형 자동차 성형 부품에 대하여 성형 해석을 위한 금형 CAD 데이터를 확보하는데 유용함을 알 수 있었다. 그러나 보다 적극적으로 사용되기 위해서는 곡면 생성의 시간 단축과 제품 면에 발생한 주름에 의한 형상 차이 등의 문제를 해결하여야 할 과제가 남아 있다. (2) 성형 해석을 위하여 자동차 외판 부품 Trunk lid outer에 대하여 성형 해석을 수행 결과 부픔의 성형성에 영향을 주지 않는 한도 내에서 r값과 n 값이 낮은 소재를 사용하는 것이 부품의 형상 동결성을 확보하는데 유리한 것을 알 수 있었다. (3) 판재 성형 부품에 대한 적절한 소재의 재질 선정 방법으로서 유한 요소 해석이 매우 유용한 것을 알 수 있었다.

Shape optimal design of a dust cover for ball joint of automotive steering system (조향장치용 볼 조인트 더스트 커버의 형상최적설계)

  • Lee, Boo-Youn;Kim, Ji-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.603-610
    • /
    • 2013
  • Finite element analysis is performed to evaluate stress and deformation of a wrinkle-type dust cover for the ball joints of tie rods of automotive steering system. Results of the analysis for assembly and operation condition show that sealing capability is good and the maximum stress on the body is smaller than the tensile strength. An optimal shape of the dust cover is obtained using the Taguchi method to reduce the maximum stress. The maximum stress of the optimal design under the operation condition is reduced by 22 per cent of that of the initial design. Results of the research show that performance evaluation and design of the dust covers can be effectively done using the proposed method.

The Uplift Capacity of Plane and Corrugated Piles for Pipe Frame Greenhouse (파이프 골조온실의 민말뚝과 주름말뚝의 인발저항력)

  • Yong Cheol Yoon;Won Myung Suh;Jae Hong Cho
    • Journal of Bio-Environment Control
    • /
    • v.10 no.3
    • /
    • pp.148-154
    • /
    • 2001
  • The uplift capacity of a pile for improving the wind resistance of the 1-2 W type plastic film pipe on greenhouses was tested using the plane and corrugated piles with various shapes and diameters. First, the resistant uplift capacity was measured by using the uplift loading on plane piles. As the uplift loading on plane piles increased, the resistant uplift capacity also increased until the loading was reached to ultimate uplift capacity. After ultimate uplift capacity was appeared the uplift displacement, the uplift capacity was decreased gradually. Secondly, the resistant uplift capacity was measured by using the uplift loading on corrugated piles. After the uplift capacity was reached the uplift displacement, the uplift capacity was continually increased or decreased. In general, the ultimate uplift capacity was independent of pile shapes, pile diameter length, and embedded pipe depth. However, the ultimate uplift capacity of a corrugated pile was twice more than that of a plane pile without regard to its diameter and embedded depth. The ultimate uplift capacity per unit pile area was increasing in deeper embedded depth. However, the longer a pile diameter was, the less ultimate uplift capacity. The uplift capacity of a plane pile, used in conjunction with the design wind velocity (26.9m.s$^{-1}$ ) of the project area, was unsatisfiable without regard to diameters and embedded depths of piles, while most of corrugated piles were well appeared uplift capacity under various experimental conditions.

  • PDF

Evaluation of Shear Deformation Energy and Fatigue Performance of Single-layer and Multi-layer Metal Bellows (단층 및 다층 금속 벨로우즈의 전단 변형 에너지 및 피로성능 평가)

  • Kyeong-Seok Lee;Jin-Seok Yu;Young-Soo Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.39-45
    • /
    • 2024
  • Seismic safety of expansion joints for piping systems has been underscored by water pipe ruptures and leaks resulting from the Gyeongju and Pohang earthquakes. Metal bellows in piping systems are applied to prevent damage from earthquakes and road subsidence in soft ground. Designed with a series of corrugated segments called convolutions, metal bellows exhibit flexibility to accommodate displacements. Several studies have examined variations in convolution shapes and layers based on the intended performance to be evaluated. Nonetheless, the research on the seismic performance of complex bellows having multiple corrugation heights is limited. In this study, monotonic loading tests, cyclic loading tests, and fatigue tests were conducted to evaluate the shear performance in seismic conditions, of metal bellows with variable convolution heights. Single- and triple-layer bellows were considered for the experimentation. The results reveal that triple-layer bellows exhibit larger maximum deformation and fatigue life than single-layer bellows. However, the high stiffness of triple-layer bellows in resisting internal pressure poses certain disadvantages. The convolutions are less flexible at lower displacements and experience leakage at a rate related to the variable height of the convolutions in certain conditions. At lower deformation rates, the fatigue life is rated higher as the number of layers increase. It converges to a similar fatigue life at higher deformation rates.