DOI QR코드

DOI QR Code

Effect on Material Property on the Frature Propagation Behavior

재료의 취성과 연성이 균열의 진전에 미치는 영향

  • Received : 2014.07.05
  • Accepted : 2014.09.29
  • Published : 2014.11.01

Abstract

In this paper, the effect of material properties on fracture behavior was studied using cohesive zone model and extended finite element method. The rectangular tensile specimen with a central inclined initial crack was modeled by plane stress elements. In the CZM modeling, cohesive elements were inserted between every bulk elements in the predicted crack propagation region before analysis, while in the XFEM the enrichment to the elements was added as needed during analysis. The crack propagation behavior was examined for brittle and ductile materials. For thin specimen configuration, wrinkle deformation was accounted for by geometrically nonlinear post-buckling analysis and the effect of wrinkling on the crack propagation was investigated.

본 논문에서는 재료의 물성에 따른 파괴 거동을 응집영역모델과 확장유한요소법을 이용하여 예측하였다. 중앙에 경사진 초기 균열을 가지는 직사각형 시편 형상에 대해 평면응력요소로 모델링하고 인장하중을 가하여 균열의 전파 거동을 모사하였다. 파손 진전이 예측되는 지역에 대해 응집영역모델링 해석에서는 모든 일반 요소들 사이에 응집요소를 삽입하였고, 확장유한요소해석에서는 요소확장영역으로 지정하였다. 취성과 소성 재료에 대해 파괴 형태를 예측하고 파괴 강도를 계산하였다. 시편의 두께가 매우 얇은 경우에 기하학적 비선형 후좌굴해석 기법으로 주름변형을 고려하였고 주름이 파괴 거동에 미치는 영향을 조사하였다.

Keywords

References

  1. Barenblatt, G. I., 1962, "The Mathematical Theory of Equilibrium Cracks in Brittle Fracture", Adv in Appl Mech, Vol. 7, pp. 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2
  2. Dugdale, D. S., 1960, "yielding of Steel Sheets Containing Slits", J Mech & Phys of Solids, Vol. 8, No. 2, pp. 100-104. https://doi.org/10.1016/0022-5096(60)90013-2
  3. Tvergaard, V., Hutchinson J. W., 1992, "The Relation between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids", J Mech & Phys of Solids, Vol. 40, pp. 1377-1397. https://doi.org/10.1016/0022-5096(92)90020-3
  4. Xu, X. P., and Needleman, A., 1994, "Numerical Simulations of Fast Crack Growth in Brittle Solids", J Mech & Phys of Solids, Vol. 42, pp. 1397-1434. https://doi.org/10.1016/0022-5096(94)90003-5
  5. Sukumar, N., Moes, M., Moran, B. and Belytschko, T., 2000, "Extended Finite Element Method for Three-dimensional Crack Modeling", Int J Num Meth in Eng, Vol. 48, No. 11, pp. 1549-1570. https://doi.org/10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A
  6. Moes, N. and Belytschko, T., 2002, "Extended Finite Element Method for Cohesive Crack Growth", Eng Frac Mech, Vol. 69, No. 7, pp.813-833. https://doi.org/10.1016/S0013-7944(01)00128-X
  7. Ji, H., Chopp, D., Dolbow, J. E., 2002, "A Hybrid Extended Finite Element/Level Set Method for Modeling Phase Transformations", Int J numer Mech Eng, Vol. 54, p. 1209-1233. https://doi.org/10.1002/nme.468
  8. Belytschko, T., Gracie, R., Ventura, Giulio., 2009, "A Review of Extended/Generalized Finite Element Methods for Material Modeling", Modeling & Simul in Mat Sci & Eng, Vol. 17, No. 4, pp. 1-31.
  9. Goldstein, R. V. and Salganik, R. L., 1974, "Brittle Fracture of Solids with Arbitrary Cracks", Int J Frac, Vol. 10, pp. 507-527. https://doi.org/10.1007/BF00155254
  10. Nuismer, R., 1975, "An Energy Release Rate Criterion for Mixed Mode Fracture", Int J Frac, Vol. 11, pp. 245-250. https://doi.org/10.1007/BF00038891
  11. Sih, G., 1974, "Strain-Energy-Density Factor Applied to Mixed-mode Crack Problems", Int J Frac, Vol. 10, pp. 305-321. https://doi.org/10.1007/BF00035493
  12. ABAQUS User's Manual, version 6.12, 2012.
  13. Turon, A., C.G. Daivila, Camanho, P.P, and Costa, J., 2007, "An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models," Engineering Fracture Mechanics, Vol. 74, pp. 1665-1682. https://doi.org/10.1016/j.engfracmech.2006.08.025
  14. Geubelle, P.H. and Baylor, J, 1998, "Impact-induced Delamination of Laminated Composites: a 2D Simulation," Composites Part B: Engineering, Vol. 29, No. 5, pp. 589-602. https://doi.org/10.1016/S1359-8368(98)00013-4
  15. Volokh, K. Y., 2004, "Comparison between Cohesive Zone Models", Num Meth in Biomed Eng, Vol 20, pp. 845-856. https://doi.org/10.1002/cnm.717
  16. Song, K., Davila, C.G., and Rose, A., 2008, "Guidelines and Parameter Selection for the Simulation of Progressive Delamination," 2008 Abaqus User's Conference.
  17. Nielsen, K. L., and John W. Hutchinson, 2012, "Cohesive Traction-Separation Laws for Tearing of Ductile Metal Plates", International Journal of Impact Engineering, Vol. 48, pp. 15-23. https://doi.org/10.1016/j.ijimpeng.2011.02.009
  18. Tessler, A., Sleight, D., and Wang, J. T., 2005, "Effective Modeling and Nonlinear Shell Analysis of Thin Membranes Exhibiting Structural Wrinkling", Journal of Spacecrafts and Rockets, Vol. 42, No. 2, pp. 287-298. https://doi.org/10.2514/1.3915
  19. Woo, K., Zignego, D. L., and Jenkins, C. H., 2011, "Tearing of Thin Sheets with Wrinkling", 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA 2011-2089.