• Title/Summary/Keyword: 주가 예측

Search Result 6,594, Processing Time 0.045 seconds

Groundwater level prediction model using artificial neural network technique (인공신경망기법을 이용한 지하수위 예측모형)

  • Chung, Il-Moon;Lee, Jeongwoo;Kim, Jitae;Park, Inchan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.562-562
    • /
    • 2016
  • 신경망 모형에서 학습이란 주어진 입출력시스템에 대하여 원하는 동작을 수행할 수 있도록 연결 강도를 최적의 상태로 적응(adaptation)시키는 과정을 의미한다. 따라서 강수와 지하수위의 관계를 연계시킨 인공신경망기법은 선택적으로 예측 지하수위에 영향을 미치는 변수들을 학습에 의하여 택함으로써 예측모형을 구성할 수 있다. 즉, 예측 지하수위와의 상관관계에 의하여 입력되는 변수와의 연결강도를 조정하여 매개변수 조정 및 모형의 최적화를 자동화할 수 있다. 본 연구에서는 지하수위에 영향을 주는 요소는 지하수위와 강우량이라고 가정하고, 지하수위의 입출력과정을 시계열 분석에 의하여 모형화하였으며 예측지하수위는 강우 및 지하수위의 선행조건과 매우 밀접한 관계를 갖는다. 따라서 선행강우 및 지하수위의 상태에 따라 이를 입력하여 미래의 지하수위를 예측하게 된다. 이 모형을 제주지역의 관측소에 적용한 결과 관측소별로 타당한 예측결과를 도출하였다.

  • PDF

Does the Geography Matter for Analysts' Forecasting Abilities and Stock Price Impacts? (기업 본사 소재지에 따른 애널리스트의 이익 예측능력 및 주가영향력 차이가 존재하는가?)

  • Kim, Dong-Soon;Eum, Seung-Sub
    • The Korean Journal of Financial Management
    • /
    • v.25 no.4
    • /
    • pp.1-24
    • /
    • 2008
  • We empirically examined the forecasting abilities of analysts in the Korean stock market with regard to their earnings estimates, and the impacts of their reports on stock prices. Further, we also examine if there is any difference in analysts' forecasting accuracy and stock prices impacts depending upon the geographical distance between analysts and companies they follow. We found the following interesting empirical results. First, analysts have tendency to overestimate sales, operating income, and net income, consistent with the previous literature. Second, the degree of overestimation depends upon the geography of companies. That is, it is smaller for companies headquartered in Seoul than companies in local provinces. Third, analysts' earnings estimates are also more accurate for companies located in Seoul. So, we conjecture that analysts have easier access to the information for the companies. Fourth, when analysts downgrade target prices, companies in Seoul are less negatively affected than those in local provinces. Even when analysts revise downward stock recommendations, stock prices of companies in Seoul go up. Overall, analysts' price impacts are more favorable for Seoul-located companies. Last, but not least, when foreign ownership is higher, investors react less negatively to downward revisions of stock recommendation, but react more negatively to downward revisions of target prices.

  • PDF

Development of Short-term Forecast Model using ERA5 reanalysis data based on Deep Learning model (ERA5 재해석 자료를 활용한 Deep Learning 모델 기반의 단기 예측 모형 개발)

  • Jin-Young Kim;Sumya Uranchimeg;Ji-Moon Yuk;Chan Ho Park;Boo Kyoung Park;Hee Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.289-289
    • /
    • 2023
  • 4차산업 혁명이 도래한 이후로 전세계적으로 AI 기술이 유래 없는 속도로 발달 및 활용되고 있으며, 다양한 분야에서 AI 기법을 도입한 연구가 활발히 진행 중에 있다. 최근 수자원 분야에서는 단기 강우 예측, 댐 유입량 예측 및 하천 수위 예측 등의 분야에서 AI 기술이 접목되어 꾸준한 기술 개발이 이루어지고 있다. 그러나 단변량으로 축척된 자료를 활용하여 중·장기 모형 개발 연구가 다수 진행되고 있지만, 급격한 기후변화 현상과 복잡한 매커니즘을 보이고 있는 기상현상의 경우 단변량 분석으로서는 정확도가 저하 될 수 있는 우려가 있는 것이 현실이다. 이에 본 연구에서는 상기에 제시된 단점을 극복하고자 다양한 기상자료를 검증·예측인자로 활용함과 동시에 Deeplearning 모형과 결합하여 신뢰성 있는 단기 강수 예측이 가능한 모형을 개발하였다. 본 연구에서는 유럽중기예보센터(ECMWF, European Center for Medium-Range Weather Forecasts)에서 제공하고 있는 ERA5 재해석 자료를 활용하였으며, Deeplearning 모형과 결합하여 단기 강우 예측이 가능한 모형을 개발하였다. 1차적으로 격자자료(25km×25km)로 제공되고 있는 ERA5 자료를 상세화(downscaling) 모형에 적용하여 기상청 관측소와 비교·검증하였으며, Deeplearning 모형을 통해 단기 예측이 가능한 모형으로 확장하였다. 이때 Deeplearning의 다양한 모형 중 시계열 분석에 있어 예측 성능이 높은 LSTM 모형을 활용하였으며, 제공되고 있는 대기 변수의 상호관계를 노드간 연결을 통해 결과의 정확도와 신뢰성을 확보하였다. 본 연구 결과는 기관별로 제공하고 있는 예측 수준을 상회하는 결과를 도출하였으며, 홍수기에 집중되는 강우량을 예측하여 대비·대책을 선제적으로 마련할 수 있는 자료로써의 활용성이 높을 것으로 사료된다.

  • PDF

ETF Trading Based on Daily KOSPI Forecasting Using Neural Networks (신경회로망을 이용한 KOSPI 예측 기반의 ETF 매매)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 2019
  • The application of neural networks to stock forecasting has received a great deal of attention because no assumption about a suitable mathematical model has to be made prior to forecasting and they are capable of extracting useful information from data, which is required to describe nonlinear input-output relations of stock forecasting. The paper builds neural network models to forecast daily KOrea composite Stock Price Index (KOSPI), and their performance is demonstrated. MAPEs of NN1 model show 0.427 and 0.627 in its learning and test, respectively. Based on the predicted KOSPI price, the paper proposes an alpha trading for trades in Exchange Traded Funds (ETFs) that fluctuate with the KOSPI200. The alpha trading is tested with data from 125 trade days, and its trade return of 7.16 ~ 15.29 % suggests that the proposed alpha trading is effective.

Design Case on Data Collection System for the GreenHouse Horticultural Crops Growth Forecasting Model (시설 원예작물 생장예측모델을 위한 데이터 수집 시스템 설계사례)

  • Ahn, Sung-Chul;Kim, Hee-Sung;Kwon, Hye-Eun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.1212-1214
    • /
    • 2012
  • 생장예측모델이란 작물의 생장 시스템 내에서 일어나는 기작이나 생산과정을 수식으로 묘사하는 것이다. 신뢰성 있는 생장예측모델을 만들기 위해서는 생장과 관련된 대량의 데이터가 필요하다. 본 논문에서는 IT와 농업을 융합한 시설 원예작물 생장예측모델을 위한 생장 및 생장환경 데이터 수집 시스템 설계사례를 소개하고자 한다.

A study on stock price prediction system based on text mining method using LSTM and stock market news (LSTM과 증시 뉴스를 활용한 텍스트 마이닝 기법 기반 주가 예측시스템 연구)

  • Hong, Sunghyuck
    • Journal of Digital Convergence
    • /
    • v.18 no.7
    • /
    • pp.223-228
    • /
    • 2020
  • The stock price reflects people's psychology, and factors affecting the entire stock market include economic growth rate, economic rate, interest rate, trade balance, exchange rate, and currency. The domestic stock market is heavily influenced by the stock index of the United States and neighboring countries on the previous day, and the representative stock indexes are the Dow index, NASDAQ, and S & P500. Recently, research on stock price analysis using stock news has been actively conducted, and research is underway to predict the future based on past time series data through artificial intelligence-based analysis. However, even if the stock market is hit for a short period of time by the forecasting system, the market will no longer move according to the short-term strategy, and it will have to change anew. Therefore, this model monitored Samsung Electronics' stock data and news information through text mining, and presented a predictable model by showing the analyzed results.

Using Hidden Markov Model for Stock Flow Forecasting (주식 예측을 위한 은닉 마코프 모델의 이용)

  • Park, Hyoung-Joon;Hong, Da-Hye;Kim, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1860-1861
    • /
    • 2007
  • 주식 예측은 주식 시장이 생긴 이래로 투자자들이나, 금융 전문가들 사이에서 매우 중요한 일이 되어 왔다. 그러한 중요성으로 인해 엘리오트 파동이론과 같은 많은 주식 예측 기법이 제시되었고, 또한 이러한 예�G의 자동화를 위해 인공지능분야에서도 많은 연구가 있어왔다. 주가 예측에 패턴인식 방법을 적용한 기존의 연구로는 주로 ANN(Artificial Neural Network)방식과 은닉 마코프 모델(HMM, Hidden Markov Model)이 있었고, 본 논문에서는 HMM을 이용한 방법을 제안한다. HMM은 시간 순차적인 패턴을 가지는 모델의 인식에 좋은 성능을 보여 주로 음성인식 분야에서 많이 이용되고 있다. 주식 변화 역시 시간 순차적 흐름에 따라 기울기의 변화가 어느 정도 일정한 패턴을 가지는 성질이 있고, 이것은 HMM을 이용한 패턴인식으로 주식의 앞으로의 변화를 예측하기에 적합한 요인이 된다. 본 논문에서는 이를 위해 다음과 같은 과정을 걸쳤다. 첫 번째로 실존 회사의 장기간의 주식 테이터를 기반으로 여러 개의 HMM모델을 학습 하였다. 두 번째로 예측하고자 하는 기간 이전의 주식 변화 데이터를 입력으로 하여, 이전에 이와 유사한 패턴이 있었는지를 HMM을 통해 알아냈다. 마지막으로 이렇게 알아낸 패턴을 이용하여 앞으로의 주식 변화를 예측하였다. 실험은 실제 주식 변화와 예측값의 비교를 통해 정확도를 검증하였다.

  • PDF

The Prediction and Trading Strategy for Intraday Stock Price Movements: A Deep Learning Approach (딥러닝을 이용한 Intraday 주가 예측 및 매매전략)

  • Hong, Yoonsik;Joo, Changhee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.7-10
    • /
    • 2022
  • 본 연구는 국내 주식의 intraday 가격변화를 딥러닝 모형들로 예측하고 그 예측모형을 이용한 매매전략 딥러닝 모형을 제안한다. 주식의 intraday 가격변화에 따라서, 고빈도 매매, 주문집행문제 (order execution problem), 자동화 매매 등과 같은 intraday 주식 트레이딩의 수익률이 달라지기 때문에, 주식의 intraday 가격변화 예측은 주식 투자에 있어서 중요하다. 해외 시장에 대해서는 인공지능 등을 이용한 intraday 가격변화 예측 연구가 활발히 이루어졌지만, 국내의 경우 관련한 연구가 드물어 그 효용성이 명확히 드러나지 않았었다. 그에 따라서, KOSPI 50의 구성 종목에 대하여 정준의(canonical) 딥러닝 모형들을 적용하여 예측 성능을 비교한다. 또한, 그 예측모형들을 활용하여 간소화된 주문집행문제에서의 매매전략 딥러닝 모형을 제안한다. 그리고, 제안한 매매전략 딥러닝 모형을 KOSPI 50의 구성 종목에 대하여 실험하여, 제안한 방법론이 유효함을 밝힌다. 제시된 모형을 실제 주식 매매에 직접 적용하여 수익성을 개선을 기대할 수 있고, 사람이 직접 거래할지라도 효과적인 보조 지표가 될 수 있기에 본 논문은 실용적 의미를 지닌다.

  • PDF

Deep Learning-based Stock Price Prediction Using Limit Order Books and News Headlines (호가창과 뉴스 헤드라인을 이용한 딥러닝 기반 주가 변동 예측 기법)

  • Ryoo, Euirim;Lee, Ki Yong;Chung, Yon Dohn
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.1
    • /
    • pp.63-79
    • /
    • 2022
  • Recently, various studies have been conducted on stock price prediction using machine learning and deep learning techniques. Among these studies, the latest studies have attempted to predict stock prices using limit order books, which contain buy and sell order information of stocks. However, most of the studies using limit order books consider only the trend of limit order books over the most recent period of a specified length, and few studies consider both the medium and short term trends of limit order books. Therefore, in this paper, we propose a deep learning-based prediction model that predicts stock price more accurately by considering both the medium and short term trends of limit order books. Moreover, the proposed model considers news headlines during the same period to reflect the qualitative status of the company in the stock price prediction. The proposed model extracts the features of changes in limit order books with CNNs and the features of news headlines using Word2vec, and combines these information to predict whether a particular company's stock will rise or fall the next day. We conducted experiments to predict the daily stock price fluctuations of five stocks (Amazon, Apple, Facebook, Google, Tesla) with the proposed model using the real NASDAQ limit order book data and news headline data, and the proposed model improved the accuracy by up to 17.66%p and the average by 14.47%p on average. In addition, we conducted a simulated investment with the proposed model and earned a minimum of $492.46 and a maximum of $2,840.93 depending on the stock for 21 business days.

Development of the KOSPI (Korea Composite Stock Price Index) forecast model using neural network and statistical methods) (신경 회로망과 통계적 기법을 이용한 종합주가지수 예측 모형의 개발)

  • Lee, Eun-Jin;Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.95-101
    • /
    • 2008
  • Modeling of stock prices forecast has been considered as one of the most difficult problem to develop accurately since stock prices are highly correlated with various environmental conditions including economics and political situation. In this paper, we propose a agent system approach to predict Korea Composite Stock Price Index (KOSPI) using neural network and statistical methods. To minimize mean of prediction error and variation of prediction error, agent system includes sub-agent modules for feature extraction, variables selection, forecast engine selection, and forecasting results analysis. As a first step to develop agent system for KOSPI forecasting, twelve economic indices are selected from twenty two basic standard economic indices using principal component analysis. From selected twelve economic indices, prediction model input variables are chosen again using best-subsets regression method. Two different types data are tested for KOSPI forecasting and the Prediction results showed 11.92 points of root mean squared error for consecutive thirty days of prediction. Also, it is shown that proposed agent system approach for KOSPI forecast is effective since required types and numbers of prediction variables are time-varying, so adaptable selection of modeling inputs and prediction engine are essential for reliable and accurate forecast model.