• Title/Summary/Keyword: 좌굴

Search Result 1,393, Processing Time 0.033 seconds

A Bifurcation Analysis of Space Structures by Using 3D Beam-Column Element Considering Finite Deformations and Bowing Effect (유한변형과 굽힘효과가 고려된 3차원 보-기둥요소에 의한 공간구조물의 분기좌굴해석)

  • Lee, Kyung-Soo;Han, Sang-Eul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.307-314
    • /
    • 2009
  • The present paper briefly describes the space frame element and the fundamental strategies in computational elastic bifurcation theory of geometrically nonlinear, single load parameter conservative elastic spatial structures. A method for large deformation(rotation) analysis of space frame is based on an eulerian formulation, which takes into consideration the effects of large joint translations and rotations with finite deformation(rotation). The local member force-deformation relationships are based on the beam-column approach, and the change in member chord lengths caused by axial strain and flexural bowing are taken into account. and the derived geometric stiffness matrix is unsymmetric because of the fact that finite rotations are not commutative under addition. To detect the singular point such as bifurcation point, an iterative pin-pointing algorithm is proposed. And the path switching mode for bifurcation path is based on the non-negative eigen-value and it's corresponding eigen-vector. Some numerical examples for bifurcation analysis are carried out for a plane frame, plane circular arch and space dome structures are described.

Derivations of Buckling Knockdown Factors for Composite Cylinders Considering Various Shell Thickness Ratios and Slenderness Ratios (다양한 두께비와 세장비를 고려한 복합재 원통 구조의 좌굴 Knockdown factor의 도출)

  • Kim, Do-Young;Sim, Chang-Hoon;Kim, Han-Il;Park, Jae-Sang;Yoo, Joon-Tae;Yoon, Young-Ha;Lee, Keejoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.321-328
    • /
    • 2021
  • This paper derives numerically new buckling Knockdown factors for the lightweight design of the composite propellant tanks for space launch vehicles. A nonlinear finite element analysis code, ABAQUS, is used for the present postbuckling analysis of composite cylinders under compressive loads. Various thickness ratios (R/t) and slenderness ratios (L/R) are considered and Single Perturbation Load Approach is applied to represent the geometric initial imperfection of the composite cylinder. For the composite cylinder with thickness ratio of 500 and slenderness ratio of 2.04, the buckling Knockdown factor derived in this work is higher by 84.38% than NASA's previous buckling design criteria. Therefore, it is investigated that a lightweight design is possible when the present Knockdown factors are used for the design of composite propellant tanks. In addition, it is shown that global buckling loads and buckling Knockdown factors decrease as the thickness ratio or slenderness ratio of composite cylinders increases.

In-Plane Buckling Behavior of Fixed Shallow Parabolic Arches (고정지점을 갖는 낮은 포물선 아치의 면내 좌굴거동)

  • Moon, Jiho;Yoon, Ki-Yong;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.79-87
    • /
    • 2008
  • This paper investigates the in-plane stability of fixed shallow arches. The shape of the arches is parabolic and the uniformly distributed load is used in the study. The nonlinear governing equilibrium equation of the general arch is adopted to derive the incremental form of the load-displacement relationship and the buckling load of the fixed shallow arches. From the results, it is found that buckling modes (symmetric or asymmetric) of the arches are closely related to the dimensionless rise H, which is the function of slenderness ratio and the rise to span ratio of such arches. Moreover, the threshold of different buckling modes and buckling load for fixed shallow arches are proposed. A series of finite element analysis are conducted and then compared with proposed ones. From the comparative study, the proposed formula provides the good prediction of the buckling load of fixed shallow arches.

A Study on Elastic Shear Buckling Coefficients of Horizontally Curved Plate Girder Web Panels (강곡선 플레이트거더 복부판의 전단좌굴계수에 관한 연구)

  • Lee, Doo-Sung;Lee, Sung-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.367-373
    • /
    • 2008
  • In the design of horizontally curved plate girder web panels, it is required to evaluate accurately the elastic buckling strength under pure shear. Currently, elastic shear buckling coefficients of curved web panels stiffened by transverse intermediate stiffeners are determined by assuming conservatively that straight web panels without curvature are simply supported at the juncture between the flange and web. However, depending upon the geometry and the properties of the curved plate girder, the elastically restrained support may behave rather closer to a fixed support. The buckling strength of curved girder web is much greater (maximum 38%) than that of a straight girder calculated under the assumption that all four edges are simply supported in Lee and Yoo (1999). In the present study, a series of numerical analyses based on a 3D finite element modeling is carried out to investigate the effects of geometric parameters on both the boundary condition at the juncture and the horizontal curvature of web panel, and the resulting data are quantified in a simple design equation.

Stability Design of Steel Frames considering Initial Imperfection based on Second-Order Elastic Analysis (2차 탄성해석을 이용한 강뼈대구조의 초기결함 좌굴설계)

  • Kyung, Yong Soo;Lee, Chang Hwan;Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.465-474
    • /
    • 2008
  • Generally design of frame structures composed of beam-column member is accomplished by stability evaluation of each member considering the effective buckling length. This study selects a member of the smallest non-dimension slenderness ratio using the buckling eigenvalue calculated by the elastic buckling eigen-value analysis and axial force of the each member, and decides the initial deflection quantity reflected geometric and material nonlinearities from a suggested equation on the base of standard strength curve of Korea Bridge Design Code. Second-order elastic analysis applying the initial deflection is executed and the stability of each member is evaluated and decides ultimate strength. Through examples of eight-stories and four-stories plane frame structures, the evaluation of the stability is compared with the existing method and ultimate strength of the suggested method is compared with ultimate strength by the nonlinear inelastic analysis. Through these procedures, the increasing of effective buckling length by elastic buckling eigenvalue analysis is prevented from a new design method that considers initial imperfections. And the validity of this method is proved.

Buckling Sensitivity of Laminated Composite Pipes Under External Uniform Pressure Considering Ply Angle (등분포하중을 받는 복합재료 관로의 적층각 변화에 따른 좌굴 민감도 분석)

  • Han, Taek Hee;Na, Tae Soo;Han, Sang Yun;Kang, Young Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.123-131
    • /
    • 2007
  • The buckling behavior of a fiber reinforced plastic pipe was researched. When a cylindrical structure is made of isotropic material, it shows two dimensional buckled shape which has same deformed section along the longitudinal direction. But an anisotropic cylindrical structure shows three dimensional buckled shape which has different deformed section along the longitudinal direction. Because the modulus of elasticity is varied in a certain direction when ply angles are changed, the strength of a pipe are changed as ply angles are changed. In this study, the limitation of two dimensional and three dimensional buckling mode was investigated and the buckling strength of a laminated composite pipe was evaluated.

A Study on the Nonlinear Buckling Behavior of Thin-Walled Sections (박판단면의 비선형 좌굴거동에 관한 해석적연구)

  • Jin, Chang Sun;Kwon, Young Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.407-421
    • /
    • 1998
  • The purpose of this paper is to provide and verify an analytical method, based on the spline finite strip method, which can be used to investigate the buckling mode and stress of thin-walled steel sections. Geometric imperfection and initial stress of plates and plate assemblies, which are resulted from various preloadings and may cause prebuckling deformations before buckling, are included in the analysis. Material nonlinearity and residual stress are also considered. It can be applied to sections with simple or non-simple boundary conditions and arbitrary loading. The method has been applied to investigate the buckling behavior of plates and plate assemblies which are subjected to compression with initial imperfections and residual stresses.

  • PDF

Elastic Behavior Characteristics of GFRP Pipes Reinforced Ribs (리브로 보강된 GFRP 관로의 탄성 좌굴거동 특성)

  • Han, Taek Hee;Seo, Joo Hyung;Youm, Eung Jun;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.737-746
    • /
    • 2006
  • The elastic buckling strength of a Glass Fiber Reinforced Plastic (GFRP) pipe reinforced with ribs was evaluated. The height and thickness of a rib and the spacing between two adjacent ribs were considered as factors affecting the buckling strength of the pipe. And also, the ratio of the longitudinal stiffness and transverse stiffness was considered as the parameter affecting the buckling strength as the GFRP is orthotropic material. Buckling strengths of various GFRP pipe models with different shapes and stiffness ratios were evaluated by FE analyses and a formula to estimate the elastic buckling strength of a rib-reinforced pipe made of orthotropic material was suggested from the regression with the results from the FE analysis. Analytical results show that a rib-reinforced pipe has a buckling strength superior to a general flat pipe and the suggested formula estimates accurate buckling strength of the rib-reinforced pipe.

Characteristics of Smart Skin for Wireless LAN system under Buckling Load (무선 랜 시스템용 스마트 스킨의 좌굴 특성 연구)

  • 전지훈;유치상;황운봉;박현철;박위상
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.43-49
    • /
    • 2001
  • The characteristics of smart skin for wireless LAN system under compression load are investigated. The smart skin structure is composed of 3 layers of face material and 2 layers of core material. Theoretical formula for determining buckling load is derived by Rayleigh-Ritz method and compared with experimental result. The maximum length of specimen that buckling does not occur is determined by assuming that the compression load is sustained by only face material. In the experiment, if buckling occurs obviously then it follows the theoretical result well. In the process of buckling, the load supporting capability and the antenna property such as radiation pattern and reflection coefficient were examined.

  • PDF

Case Study for Buckling Design of Temporary Bridges using System Buckling Analysis (시스템좌굴 해석법을 이용한 라멘형가교 주요부재의 좌굴설계에 관한 사례 연구)

  • Kyung, Yong Soo;So, Byoung Hoon;Bang, Jin Hwan;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.87-98
    • /
    • 2007
  • Generally, main girders and steel piers of temporary bridges form the steel rahmen structure. In this study, the rational stability design procedure for main members of temporary bridges was presented using a 3D system buckling analysis and second-order elastic analysis. Six types of temporary bridges, which can be designed and fabricated in reality, were chosen and the buckling design for them was performed in consideration ofload combinations of dead and live loads, thermal load, and wind load. Effective buckling length of steel piers, transition of 3D buckling modes, and effects of second-order analysis were investigated through a case study involving six temporary bridges.