• Title/Summary/Keyword: 좌굴후 현상

Search Result 19, Processing Time 0.022 seconds

Post-buckling analysis using a load-displacement control (하중과 변위의 동시제어에 의한 좌굴후 현상해석)

  • Kwon, Y.D.;Lim, B.S.;Park, C.;Choi, J.M.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1931-1942
    • /
    • 1997
  • A new load/displacement parameter method is developed for the cases that loads are applied to one or more points, and displacements of a structure are controlled at one or more points sinultaneously. The procedure exploits a generalized Riks method, which utilizes load/displacement parameters as scaling factors in order to analyze the post-buckling phenomena including snap-through or snap-back. A convergence characteristic is improved by employing new relaxation factors in incremental displacement parameter, particularly at the region where exhibits severe numerical instability. The improved performance is illustrated by means of numerical example.

Stability and Post-buckling Analysis of Stiffened Plate and Shell Structures (보강된 판 및 쉘구조의 좌굴 및 후좌굴해석)

  • 김문영;최명수;민병철
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.155-168
    • /
    • 1998
  • 보강된 판 및 쉘구조의 안정성 및 후좌굴을 포함하는 기하학적 비선형 해석을 수행하기 위하여, total Lagrangian formulation에 근거한 연속체의 증분평형방정식으로부터 변형된 쉘요소인 유한요소이론을 제시하였다. 쉘구조의 곡률이 불연속적으로 변하거나 쉘부재들이 유한한 각도로 만나는 보강된 판 및 쉘구조의 비선형 해석이 가능하도록 주부재와 보강재 간의 연결점에 대한 일반적인 변환관계를 제시하였으며 좌굴해석 및 기하학적 비선형해석의 경우에 해의 정확성 및 수렴성을 개선시키기 위하여 접선강도행렬 산정시 회전각의 2차항을 포함시켰다. 또한, shear locking 현상을 극복하기 위하여 감차적분을 적용하였고 쉘구조의 좌굴해석에서는 power method를 적용하여 해석의 효율을 높였으며, 후좌굴해석에서는 변위 및 하중증분법을 적절히 결합시켜 보강된 쉘구조의 후좌굴 거동추적이 용이하였다. 또한, 입력자료를 손쉽게 준비하고 좌굴모드 및 후좌굴거동을 효율적으로 분석하기 위하여 전, 후 처리 프로그램을 개발하였고 다양한 해석예제를 통하여 다른 문헌의 해석결과를 비교함으로써 본 연구에서 개발된 유한요소 해석프로그램의 타당성 및 정확성을 입증하였다.

  • PDF

Finite Element Analysis of Post-Buckling Phenomena Using Adaptive Load/ Displacement Parameter (선택적 하중/변위 파라미터를 이용한 좌굴후 현상의 유한요소 해석)

  • 최진민;정윤태;윤태혁;권영두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.503-512
    • /
    • 1990
  • In this study, a penalty method effective for the case that has no snap-back phenomenon, is proposed and an adaptive method which choose the penalty method or Riks' type method, is suggested for the case of snap-back problem. And for the case that loads are applied to one or more points of a structure, the Riks' method is applied in general, but under certain condition choice of new incremental load parameter is suggested to accelerate the convergence rate. Finally, for the case that displacements of a structure are controlled at one or more points Riks' type method is proposed. In this case, the proposed method is applied in general but under certain condition it is recommended to choose other incremental displacement parameter to eliminate probable divergence. Five examples are analysed and compared with the result of published literature.

A Nonlinear Truss Finite Element Model for Structures with Negative Poisson Effect Accompanied by Tensile Buckling (인장 좌굴 현상을 수반하는 음의 포아송 효과를 가지는 구조물 해석을 위한 비선형 트러스 유한요소 모델)

  • Tae-Wan Kim;Jun-Sik Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.193-201
    • /
    • 2023
  • In this study, a nonlinear truss finite element is developed to analyze structures with negative Poisson effect-induced tensile buckling. In general, the well-known buckling phenomenon is a stability problem under a compressive load, whereas tensile buckling occurs because of local compression caused by tension. It is not as well-known as classical buckling because it is a recent study. The mechanism of tensile buckling can be briefly explained from an energy standpoint. The nonlinear truss finite element with a torsional spring is formulated because the finite element has not been reported in the literature yet. The post-buckling analysis is then performed using the generalized displacement control method, which reveals that the torsional spring plays an important role in tensile buckling. Structures that mimic a negative Poisson effect can be constructed using such post-buckling behaviors, and one of the possible applications is a mechanical switch. The results obtained are compared to those of analytical solutions and commercial finite element analysis to assess the validity of the proposed finite element model. The numerical results show that the developed finite element model could be a viable option for the basic design of nonlinear structures with a negative Poisson effect.

Postbuckling and Vibration Analysis of Cylindrical Composite Panel subject to Thermal Loads (열하중을 받는 복합적층 원통형 패널의 좌굴후 거동 및 진동해석)

  • Oh, Il-Kwon;Lee, In
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.148-156
    • /
    • 1999
  • The thermal postbuckling and vibration characteristics of cylindrical composite panel subject to thermal loads are analyzed using finite elements. The von-Karman nonlinear displacement-strain relation based on the layerwise theory is applied to consider large deflections due to thermal loads. Cylindrical arc-length method is used to take into account the snapping phenomena. Thermal snapping and vibration characteristics are investigated for various structural parameters such as thickness ratio, shallowness angle and boundary conditions. The present results show that thermal snapping changes the mode shapes as well as static deformations.

  • PDF

The Dynamic Post-Buckling Analysis of the Non-Conservative System including Damping Effects (감쇠효과(減衰效果)를 고려한 비보존력계(非保存力系)의 동적(動的) 후좌굴(後挫屈) 해석(解析))

  • Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.67-75
    • /
    • 1990
  • A geometrically nonlinear analysis procedure including the damping effects is presented for the investigation of the dynamic post-divergence and post-flutter behavior of a non-conservative system. The dynamic nonlinear analysis of plane frame structure subjected to conservative and non-conservative forces is carried out by solving the equations of motion using Newmark method. Numerical results are presented to demonstrate the effects of the internal and external damping forces in the conservative and non-conservative systems.

  • PDF

안정적 좌굴 모델을 통한 저감쇠 직물 시뮬레이션

  • Choe, Gwang-Jin;Go, Hyeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.1
    • /
    • pp.37-45
    • /
    • 2002
  • We present a cloth simulation technique that is very stable yet also responsive. The stability of the technique allows the use of a large fixed time step when simulating various types of fabrics and character motions. The animations generated using this technique are strikingly realistic. Wrinkles form and disappear in a quite natural way, which is the feature that most distinguishes textile fabrics from other sheet materials. Significant improvements in both the stability and realism were made possible by overcoming the post-buckling instability as well as the numerical instability. The instability caused by buckling arises from a structural instability and therefore cannot be avoided by simply employing an implicit method. Addition of a damping force may help to avoid instabilities; however, it can significantly degrade the realism of the cloth motion. In this paper, a new buckling model based on immediate buckling assumption is proposed. A cloth element is assumed to reach a stable configuration immediately once it begins to buckle. This assumption makes it possible to simulate the fabric buckling stably without introducing any fictitious damping force. Consequently, it produces highly responsive cloth motion as well as improves the stability by modeling the fabric-specific buckling property adequately.

  • PDF

Characteristics of Smart Skin for Wireless LAN system under Buckling Load (무선 랜 시스템용 스마트 스킨의 좌굴 특성 연구)

  • 전지훈;유치상;황운봉;박현철;박위상
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.43-49
    • /
    • 2001
  • The characteristics of smart skin for wireless LAN system under compression load are investigated. The smart skin structure is composed of 3 layers of face material and 2 layers of core material. Theoretical formula for determining buckling load is derived by Rayleigh-Ritz method and compared with experimental result. The maximum length of specimen that buckling does not occur is determined by assuming that the compression load is sustained by only face material. In the experiment, if buckling occurs obviously then it follows the theoretical result well. In the process of buckling, the load supporting capability and the antenna property such as radiation pattern and reflection coefficient were examined.

  • PDF

A Study of the In-plane Rigidity of a Compressed Ship Plate above Buckling Load (압축하중을 받는 선체판의 좌굴후 면내강성에 관한 연구)

  • 고재용;박성현;박주신
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.107-112
    • /
    • 2002
  • Basically, ship structure consists of the plate members, and a strength of overall ship structurnds on the stiffness and strength of ship platings. If buckling which causes to deflect ship plate members occurs, the stiffness of ship plate markedly decreases, and thus buckling has a serious effect on the stiffness or strength of overall ship structure. Buckling is one of the most important design criteria when we scantle structure members. In the present study, a inplane rigidity of a compressed ship plate above buckling load is proposed. The proposed inplane rigidity is available in the elastic or elasto-Plastic ranges in order to can out a more efficient and reliable design.

  • PDF

A Study on Buckling Behavior of Shallow Circular Arches (낮은 원호아치의 좌굴거동에 대한 연구)

  • 김연태;허택녕;오순택
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.87-94
    • /
    • 1998
  • Behavioral characteristics of shallow circular arches with dynamic loading and different end conditions are analysed. Geometric nonlinearity is modelled using Lagrangian description of the motion. The finite element analysis procedure is used to solve the dynamic equation of motion, and the Newmark method is adopted in the approximation of time integration. The behavior of arches is analysed using the buckling criterion and non-dimensional time, load and shape parameters which Humphreys suggested. But a new deflection-ratio formula including the effect of horizontal displacement plus vertical displacement is presented to apply for the non-symmetric buckling problems. Through the model analysis, it's confirmed that fix-ended arches have higher buckling stability than hinge-ended arches, and arches with the same shape parameter have the same deflection ratio at the same time parameter when loaded with the same parametric load.

  • PDF