• Title/Summary/Keyword: 종횡비 영향

Search Result 128, Processing Time 0.025 seconds

Validation of an Unsteady Two-dimensional Hydrodynamic and Transport Model with Experiments (비정상상태 하천흐름에서 오염물질 혼합 수치모형의 신뢰성 평가)

  • Moon, Hyoung-Bu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1168-1179
    • /
    • 2006
  • The validity of an unsteady two-dimensional(2-D) numerical hydrodynamic and pollutant dispersion model(2DNHPDM) was evaluated using the data obtained from I-sa streams in Sooncheon, Chonnam, during rain-fall run-off. Field observations was conducted for 35 hours during the 10 hours rainfall event on 7th May 2005. The water level, 2-D velocity, flow field, and COD at seven points selected along the river were measured at intervals of one hour. The model was applied to describe two-dimensional movement of dissolved pollutants in meandering non-uniform river. Major physical processes affecting the lateral and horizontal mixing of the river flow were simulated. The model was proved effective in describing the hydrodynamics and dispersion of the river pollutants from its major tributaries as well as non-point sources.

Development of Ultimate Strength Design Formula considering Buckling under Longitudinal and Transverse Axial Compressive Load (종횡방향 압축하중을 받는 유공판의 최종강도 설계식 개발)

  • Park Joo-Shin;Ko Jae-Yong;Lee Jun-Kyo
    • Journal of Navigation and Port Research
    • /
    • v.30 no.3 s.109
    • /
    • pp.173-179
    • /
    • 2006
  • A number of perforated plates are utilized for the passage of the crew and the equipment, reducing weight and the arrangement of piping. Hull girders in double bottom and floor plates are the typical parts which have those plates in a ship structure, and the perforated plate is usually positioned at the place which has less loading without local strength problems. In the case of utilizing the plate inevitably at the place which has large strength, an opening of the plate has large effect on the buckling strength due to in-plane rigidity and ultimate strength. Therefore the assessments of the elastic buckling strength and the ultimate strength for the perforated plate are the essential requirements for determining the dimensions of the parts at the initial design stage. With above reason, a need of the reasonable assessments for the elastic buckling strength and the ultimate strength has evolved. The numerical series analysis with the consideration of the effect due to various aspect ratios and slenderness ratios were performed using finite element method in this research. Simple formulas for the design are also proposed from the above analysis.

Effects of Elastic Modulus Ratio on Internal Stresses in Short Fiber Composites (단섬유 복합체에서 탄성계수비가 내부응력에 미치는 영향)

  • 김홍건;노홍길
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.73-78
    • /
    • 2004
  • The conventional SLT(Shear Lag Theory) which has been proven that it can not provide sufficiently accurate strengthening predictions in elastic regime when the fiber aspect ratio is small. This paper is an extented work to improve it by modifying the load transfer mechanism called NSLT(New Shear Lag Theory), which takes into account the stress transfer across the fiber ends and the SCF(Stress Concentration Factor) that exists in the matrix regions near the fiber ends. The key point of the model development is to determine the major controlling factor among the material and geometrical coefficients. It is found that the most affecting factor is the fiber/matrix elastic modulus ratio. It is also found that the proposed model gives a good result that has the capability to correctly predict the elastic properties such as interfacial shear stresses and local stress variations in the small fiber aspect ratio regime.

섬유배향각 분포측정에 잇어서 교점계수법의 정밀도에 미치는 섬유종횡비와 면적비의 영향

  • 이상동;김혁;한길영;김이곤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.659-663
    • /
    • 1995
  • The fiber oriented conditied inside fiber reinforced composite material is a basic factor of mechanical properties of composite materials. It is very important to measure the fiber orientation angel for the determination of molding conditions, mechanical charactistics, and the design of composite materials. In the work, the fiber orientation distribution of simulation figure plotted by PC is measured using image processing in order to examine thr accuracy of intersection counting method. The fiber orientation function measured by intersection countingmethod using image processing is compared with the calculated fiber orientation function. The results show that the measured value of fiber orientation function using intersection counting method is lower than the calculated value, because the number of intersection between the secant line and the fiber with smaller fiber aspect ratio is counted less than with larger fiber aspect ratio.

Characteristics of Copper Film Fabricated by Pulsed Electrodeposition with Additives for ULSI Interconnection (펄스전착법과 첨가제를 사용하여 전착된 ULSI배선용 구리박막의 특성)

  • Lee Kyoung-Woo;Yang Sung-Hoon;Lee Seoghyeong;Shin Chang-Hee;Park Jong-Wan
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.237-241
    • /
    • 1999
  • The characteristics of copper thin films and via hole filling capability were investigated by pulsed electrodeposition method. Especially, the effects of additives on the properties of copper thin films were studied. Copper films, which were deposited by pulsed electrodeposition using commercial additives, had low tensile stress value under 83.4 MPa and high preferred Cu (111) texture. Via holes with $0.25{\mu}m$ in diameter and 6 : 1 aspect ratio were successfully filled without any defects by superfilling. It was observed that copper microstructure deformed by twining. After heat treatment at $500^{\circ}C$ for 1 k in vacuum furnace, grain size was 1 or 2 times as large as film thickness and the bamboo structure was formed. Heat treated copper films showed good resistivities of $1.8\~2.0{\mu}{\Omega}{\cdot}cm$.

Effect of Crust Increase on Natural Convection Heat Transfer in the Molten Metal Pool (용융 금속의 고화층 증가가 자연대류 열전달에 미치는 영향)

  • Park, Rae-Joon;Choi, Sang-Min;Kim, Sang-Baik;Kim, Hee-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.226-233
    • /
    • 1999
  • An experimental study has been performed on natural convection heat transfer with a rapid crust formation in the molten metal pool of a low Prandtl number fluid. Two types of steady state tests, a low and high geometric aspect ratio cases in the molten metal pool, were performed. The crust thickness by solidification was measured 88 a function of boundary surface temperatures. The experimental results on the relationship between the Nusselt number and Rayleigh number In the molten metal pool with a crust formation were compared with existing correlations. The experimental study has shown that the bottom surface temperature of the molten metal layer, in all experiments. is the major influential parameter in the crust formation, duo to the natural convection flow. The Nusselt number of the case without a crust formation in the molten metal pool is greater than that of the case with the crust formation at the same Rayleigh number. The present experimental results on the relationship between the Nusselt number and Rayleigh number In the molten metal pool match well with Globe and Dropkin's correlation. From the experimental results, a now correlation between the Nusslet number and Rayleigh number in the molten metal pool with the crust formation was developed as $Nu=0.0923(Ra)^{0.302}$ ($2{\times}10^4< Ra<2{\times}10^7$).

Anodizing of pure Al foil for AAO as a Nanowire Template (Al 양극산화에 의한 나노선재용 AAO template제조)

  • Lee Kwan Hyi;Lee Hwa Young;Jeung Won Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.47-52
    • /
    • 2001
  • AAO template having nano scale pores of high aspect ratio has been prepared through anodizing of aluminum foil in sulfuric acid electrolyte. The effect of anodizing parameters on the pore size and distribution was also examined to obtain the proper AAO as a template material of nanowire. The surface of AAO template prepared was observed by SEM to examine the mean size and distribution of pores generated by the anodizing and Fe nanowires obtained by AC electroforming using AAO template were also observed with TEM to determine the length and shape of them. From the results of work, it was found that the mean size or distribution of pores was influenced significantly by the anodizing parameters such as voltage and temperature of electrolyte. Mean length and aspect ratio of Fe nanowires prepared in the work were found to be $10{\mu}m\;and\;300\;to\;1,000$, respectively.

Effects of rolling condition on recrystalized structure and strength in over aged 7075 AI alloy (과시효처리된 7075 AI합금에 있어서 압연조건이 재결정조직과 강도에 미치는 영향)

  • Kim, Chang-Ju;Kim, Hyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.241-249
    • /
    • 1994
  • We studied on the effects of hot-worm rolling on recrystalized structures and tensile strength in over-aged 7075 A1 alloy, to develop the process for improving properties. It showed more clear effect of the grain refinement with over-aging before plastic deformation. That means, the coarse precipitates from over-aging play a roll as nucleation sites in the course of recrystallization. And on this study, the relations between yield strength and grain size was not satisfied with Hall-Petch equation because of the elongated structure, but the yield strength is proportional to aspect ratio of grains. In TMT process for improving strength and toughness, the worm working is available for increase of those properties than cold working.

  • PDF

Study on the Properties of TiO2 Film Deposited by ALD at Low Temperature (ALD로 저온에서 증착된 TiO2 박막의 막질에 대한 연구)

  • Park, Won Hee;Shin, Jeong Woo;Yang, Byung Chan;Park, Man-Jin;Jang, Dong Young;An, Jihwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.43-47
    • /
    • 2016
  • This paper covers the study on the properties of $TiO_2$ film deposited by atomic layer deposition (ALD) using TTIP and water at various temperatures including the low temperature range of <$150^{\circ}C$. At low deposition temperature, ALD $TiO_2$ films showed uniform growth rate per cycle ($0.3{\AA}/cycle$), good uniformity, smooth surface, and homogenous amorphicity. They also showed good conformality of >80% on the trench structure with the high aspect ratio of up to 75. However, relatively high concentration of impurities (C~4-7 at%) in the film was observed due to low deposition temperature.

Effects of Interactions between the Concrete Deck and Steel Girders on the Behavior of Simply Supported Skew Bridges (단순 사교의 거동에 미치는 콘크리트 상판과 주형간의 상호작용 효과)

  • Moon Seong-Kwon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.203-212
    • /
    • 2006
  • Although composite construction has many mechanical advantages over noncomposite construction, the design of noncomposite construction for skew bridges with large skew angels has been often checked because composite construction caused large stresses in the bridge deck. But there is somewhat difficulty to apply noncomposite construction in the field because of the structural problem such as the slip at the interface between the concrete deck and steel girders. In this study, the validity of the application of the composite construction to skew angles with large skew angles is investigated by analyzing effects of two interactions such as composite and noncomposite actions between the concrete deck and steel girders on the behavior of skew bridges. A series of parametric studies for the total 27 simply supported skew bridges was conducted with respect to parameters such as girder spacing, skew angle, and deck aspect ratio. The improvement of the behavior of composite skew bridges was examined by using the concept of the stiffness adjustment of bearings which I suggested in previous research. Results of analyses show that a more desirable behavior of skew bridges can be obtained from composite construction instead of noncomposite construction and the method of the stiffness adjustment of bearings results in a more rational and economical design of composite skew bridges and substructures.