• Title/Summary/Keyword: 졸겔법

Search Result 30, Processing Time 0.022 seconds

Studies on the properties of electrochromic films and the effect of migration barrier (Electrochromic 막의 특성과 물질이동 방지막의 효과에 대한 연구)

  • 황하룡;백지흠;허증수;이덕동;임정옥;장동식
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.221-226
    • /
    • 2000
  • After manufacturing the electrochromic device (structure: ITO glass/$WO_3$/electrolyte/$V_2O_5$/ITO;glass) by using of sol-gel process and evaporation, optical properties and migration effect were investigated. The result shows that electrochromic device with heat treated (at water vapor ambient, $500^{\circ}C$, 1 hour) sol-gel coated $WO_3$ and $V_2O_5$ films had the highest transmittance variance. Electrochromic devices are based on the reversible insertion of guest atoms into structure of the host solid. But after cyclic operation, we find that the tungsten in $WO_3$ film and the indium in ITO film were migrated with each other. For the purpose of blocking migration, tungsten barrier film is inserted between ITO and $WO_3$ film. The result of cyclic voltamogram and the Auger depth profile show that the peak separation of cyclic voltamogram is reduced to below 1/10 and we could effectively block the indium and tungsten migration that is caused by flow of Li ions.

  • PDF

Solidification of Molten Salt Waste by Gel-Route Pre-treatment (겔화 전처리법을 이용한 폐용융염의 고형화)

  • Park Hwan Seo;Kim In Tae;Kim Hwan Young;Ryu Seung Kon;Kim Joon Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.1
    • /
    • pp.57-65
    • /
    • 2005
  • This study suggested a new method for the solidification of molten salt waste generated from the electro-metallurgical process in the spent fuel treatment. Using binary material system, sodium silicate and phosphoric acid, metal chlorides were converted into metal phosphate in the micro-reaction module formed by SiO$_{2} particles. The volatile element in the reaction module would little vaporized below 1100$^{circ}$C After the gel product was mixed with borosilicate glass powder and thermally treated at 1000$^{circ}$C, li exists as Li$_{3}$PO$_4$ separated from glass phase and, Cs and Sr would be incorporated into an amorphous phase from XRD analysis. In case of the addition of ZrCl$_{4}$ to the binary system, the gel products were transformed into NZP structure considered as an prospective ceramic waste form after heat-treatment above 700 $^{circ}$C. From these results, the gel-route pretreatment can be considered as an effective approach to the solidincation of molten salt waste by the confirmed process or waste form and this also would be an alternative method on the ANL method using zeolites in USA by the confirmation of its chemical durability as an future work.

  • PDF

Magnetic Properties of NiZnCu Ferrite for Multilayer Chip Inductors (칩인덕터용 NiZnCu Ferrite의 자기적 특성 연구)

  • An, Sung-Yong;Moon, Byeong-Chol;Jung, Hyun-Chul;Jung, Hyun-Jin;Kim, Ic-Seob;Hahn, Jin-Woo;Wi, Sung-Kwon
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.58-62
    • /
    • 2008
  • $Ni_{0.4}Zn_{0.4}Cu_{0.2}Fe_2O_4$ ferrite was fabricated by solid stat reaction method and sol-gel method. Because of the drawbacks of each method, we combined these two methods together. We proposed and experimentally verified that nanocrystalline ferrite additive was effective on improving the densification behavior and magnetic properties of NiZnCu ferrites for multilayer chip inductors. The initial permeability of the toroidal core Sample with 20 wt% nanocrystalline ferrite increased from 78.1 to 178.2 as annealing temperature is increased from $880^{\circ}C$ to $920^{\circ}C$. The density, shrinkage and saturation magnetization were increased with increasing annealing temperature, which was attributed to the decrease of additive grain size and increase of sintering density.

The Preparation of $TiO_2$ Coated Activated Carbon Pellets Driven by LED and Removal Characteristics of VOCs (LED구동 $TiO_2$ 코팅 활성탄소 펠렛 제조 및 VOCs 제거 특성)

  • Kim, Yesol;Kim, Do Young;Jung, Min-Jung;Kim, Min Il;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.314-319
    • /
    • 2013
  • In this study, nitrogen doped $TiO_2$ ($N-TiO_2$) coated on an activated carbon pellet (ACP) was prepared using sol-gel and the solid state heat treatment of urea to improve the removal property of volatile organic compounds (VOCs). To explore the visible light photocatalytic activity of the ACP under the light emitting diods (LED), the removal property of benzene gas was characterized by gas chromatography. The SEM and BET results show that the increment of titanium tetra isopropoxide contents leads to the increased $TiO_2$ coating amount of ACP surface and decreased specific surface area. From the results of benzene gas removal, the breakthrough time of ACP10 increased about 2 times compared to that of the ACP. The improved performance was attributed to the $N-TiO_2$ coating on ACP surface, which could be more effective to remove benzene gas under the condition of LED lamp.

Superconductor Preparation by use of YBa2Cu3Ox powder and BaPbO3 Additive (YBa2Cu3Ox 분말과 첨가제 BaPbO3를 이용한 초전도체 제작)

  • Chu, Soon-Nam;Park, Jung-Cheul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1771-1776
    • /
    • 2011
  • In this paper, as an attempt to improve the preparation conditions of $YBa_2Cu_3Ox$ superconducting bulk samples, the properties of $YBa_2Cu_3Ox$ superconductor depending on the particle size of YBCO powder and $BaPbO_3$ as an additive have been investigated, and a study on the effects of additive to the density, grain alignment, and porosity of samples that affect the critical current of superconductor has been performed. In order to prepare superconductor, $YBa_2Cu_3Ox$ powder synthesized by sol-gel method, showing a size distribution of 0.2~1 ${\mu}m$ was used. The $BaPbO_3$ added to promote grain growth and to decrease porosities and weak links between grain boundaries of $YBa_2Cu_3Ox$ superconductors. In the samples prepared by sol-gel synthesized powder with 10, 20, and 30 wt% conductive $BaPbO_3$ additives, the sample with 20 wt% $BaPbO_3$ obtained the highest critical current of 4.74 A, showing 20 wt% higher critical current than that with solid state synthesized powder.

Synthesis and Electrochemical Characteristics of Carbon Coated SiOx/ZnO Composites by Sol-gel Method (졸겔법으로 제조한 탄소피복된 SiOx/ZnO 복합체의 합성 및 전기화학적 특성)

  • Baek, Gwang-Yong;Jeong, Sang Mun;Na, Byung-Ki
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.308-315
    • /
    • 2016
  • $SiO_x/ZnO$ composites were prepared from sol-gel method for excellent cycle life characteristics. The composites were coated by PVC as a carbon precursor. ZnO removal to create a void space therein was able to buffer the volume change during charge and discharge. To determine the crystal structure and the shape of the synthesized composite, XRD, SEM, TEM analysis was performed. The carbon contents in the composites were confirmed by TGA. The pore structure and pore size distribution of the composite was measured with the BET specific surface area analysis and BJH pore size distribution. Enhanced electric conductivity by carbon addition was determined from powder resistance measurement. Electrochemical properties were measured with the AC impedance and the charge and discharge cycle life characteristics. When carbon was coated on the $SiO_x/ZnO$ sample, the electrical conductivity and the discharge capacity were increased. After removal of ZnO with HCl the surface area of the sample was increased, but the discharge capacity was decreased. $SiO_x/ZnO$ sample without acarbon coating showed very low discharge capacity, and after carbon coating the sample showed high discharge capacity. For cycle life characteristics, $C-SiO_x/ZnO$ composite (Zn : Si : C = 1 : 1 : 8) with a capacity of $815mAh\;g^{-1}$ at 50 cycle and 0.2 C has higher capacity than existing graphite-based anode materials.

Evaluation of TiN-Zr Hydrogen Permeation Membrane by MLCA (Material Life Cycle Assessment) (물질전과정평가(MLCA)를 통한 TiN-Zr 수소분리막의 환경성 평가)

  • Kim, Min-Gyeom;Son, Jong-Tae;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of TiN-Zr membrane manufacturing process. The software of MLCA was Gabi. Through this, environmental impact assessment was performed for each process. Transition metal nitrides have been researched extensively because of their properties. Among these, TiN has the most attention. TiN is a ceramic materials which possess the good combination of physical and chemical properties, such as high melting point, high hardness, and relatively low specific gravity, high wear resistance and high corrosion resistance. With these properties, TiN plays an important role in functional materials for application in separation hydrogen from fossil fuel. Precursor TiN was synthesized by sol-gel method and zirconium was coated by ball mill method. The metallurgical, physical and thermodynamic characteristics of the membranes were analyzed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDS), X-ray Diffraction (XRD), Thermo Gravimetry/Differential Thermal Analysis (TG/DTA), Brunauer, Emmett, Teller (BET) and Gas Chromatograph System (GP). As a result of characterization and normalization, environmental impacts were 94% in MAETP (Marine Aquatic Ecotoxicity), 2% FAETP (Freshwater Aquatic Ecotoxicity), 2% HTP (Human Toxicity Potential). TiN fabrication process appears to have a direct or indirect impact on the human body. It is believed that the greatest impact that HTP can have on human is the carcinogenic properties. This shows that electricity use has a great influence on ecosystem impact. TiN-Zr was analyzed in Eco-Indicator '99 (EI99) and CML 2001 methodology.

Stabilization of Radioactive Molten Salt Waste by Using Silica-Based Inorganic Material (실리카 함유 무기매질에 의한 폐용융염의 안정화)

  • Park, Hwan-Seo;Kim, In-Tae;Kim, Hwan-Young;Kim, Joon-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.171-177
    • /
    • 2007
  • This study suggested a new method to stabilize molten salt wastes generated from the pyre-process for the spent fuel treatment. Using conventional sol-gel process, $SiO_2-Al_2O_3-P_2O_5$ (SAP) inorganic material that is reactive to metal chlorides were prepared. In this paper, the reactivity of SAP with the metal chlorides at $650{\sim}850$, the thermal stability of reaction products and their leach-resistance under the PCT-A test method were investigated. Alkali metal chlorides were converted into metal aluminosilicate($LixAlxSi1-_xO_{2-x}$) and metal phosphate($Li_3PO_4\;and\;Cs_2AlP_3O_{10}$) While alkali earth and rare earth chlorides were changed into only metal phosphates ($Sr_5(PO_4)_3Cl\;and\;CePO_4$). The conversion rate was about $96{\sim}99%$ at a salt waste/SAP weight ratio of 0.5 and a weight loss up to $1100^{\circ}C$ measured by thermogravimetric analysis were below 1wt%. The leach rates of Cs and Sr under the PCT-A test condition were about $10^{-2}g/m^2\;day\;and\;10^{-4}g/m^2\;day$. From these results, it could be concluded that SAP can be considered as an effective stabilizer for metal chlorides and the method using SAP will give a chance to reduce the volume of salt wasteform for the final disposal through further researches.

  • PDF

Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO2-Al2O3-P2O5 (SAP) inorganic composite: Part 1. Dechlorination Behavior of LiCl-KCl and Characteristics of Consolidation (SiO2-Al2O3-P2O5 무기복합체를 이용한 LiCl-KCl 방사성 폐기물의 안정화/고형화: Part 1. LiCl-KCl의 탈염화 반응거동 및 고형화특성)

  • Cho, In-Hak;Park, Hwan-Seo;Ahn, Soo-Na;Kim, In-Tae;Cho, Yong-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.45-53
    • /
    • 2012
  • The metal chloride wastes from a pyrochemical process to recover uranium and transuranic elements has been considered as a problematic waste difficult to apply to a conventional solidification method due to the high volatility and low compatibility with silicate glass. In this study, a dechlorination approach to treat LiCl-KCl waste for final disposal was adapted. In this study, a $SiO_2-Al_2O_3-P_2O_5$ (SAP) inorganic composite as a dechlorination agent was prepared by a conventional sol-gel process. By using a series of SAPs, the dechlorination behavior and consolidation of reaction products were investigated. Different from LiCl waste, the dechlorination reaction occurred mainly at two temperature ranges. The thermogravimetric test indicated that the first reaction range was about $400^{\circ}C$ for LiCl and the second was about $700^{\circ}C$ for KCl. The SAP 1071 (Si/Al/P=1/0.75/1 in molar) was found to be the most favorable SAP as a dechlorination agent under given conditions. The consolidation test revealed that the bulk shape and the densification of consolidated forms depended on the SAP/Salt ratios. The leaching test by PCT-A method was performed to evaluate the durability of consolidated forms. This study provided the basic information on the dechlorination approach. Based on the experimental results, the dechlorination method using a $SiO_2-Al_2O_3-P_2O_5$ (SAP) could be considered as one of alternatives for the immobilization of waste salt.

Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO2-Al2O3-P2O5 (SAP) Inorganic Composite: Part 2. The Effect of SAP Composition on Stabilization/Solidification (SiO2-Al2O3-P2O5 (SAP) 무기복합체를 이용한 LiCl-KCl 방사성 폐기물의 안정화/고형화: Part 2. SAP조성에 따른 안정화/고형화특성 변화)

  • Ahn, Soo-Na;Park, Hwan-Seo;Cho, In-Hak;Kim, In-Tae;Cho, Yong-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.27-36
    • /
    • 2012
  • Metal chloride waste is generated as a main waste streams in a series of electrolytic processes of a pyrochemical process. Different from carbonate or nitrate salt, metal chloride is not decomposed into oxide and chlorine but it is just vaporized. Also, it has low compatibility with conventional silicate glasses. Our research group adapted the dechlorination approach for the immobilization of waste salt. In this study, the composition of SAP ($SiO_2-Al_2O_3-P_2O_5$) was adjusted to enhance the reactivity and to simplify the solidification process as a subsequent research. The addition of $Fe_2O_3$ into the basic SAP decreased the SAP/Salt ratio in weight from 3 for SAP 1071 to 2.25 for M-SAP( Fe=0.1). The experimental results indicated that the addition of $Fe_2O_3$ increased the reactivity of M-SAP with LiCl-KCl but the reactivity gradually decreased above Fe=0.1. Also, introducing $B_2O_3$ into M-SAP requires no glass binder for the consolidation of reaction products. U-SAP ($SiO_2-Al_2O_3-Fe_2O_3-P_2O_5-B_2O_3$) could effectively dechlorinate the LiCl-KCl waste and its reaction product could be consolidated as a monolithic form without a glass binder. The leaching test result indicated that U-SAP 1071 was more durable than other SAPs wasteform. By using U-SAP, 1 g of waste salt could generated 3~4 g of wasteform for final disposal. The final volume would be about 3~4 times lower than the glass-bonded sodalite. From these results, it could be concluded that the dechlorination approach using U-SAP would be one of prospective methods to manage the volatile waste salt.