DOI QR코드

DOI QR Code

Magnetic Properties of NiZnCu Ferrite for Multilayer Chip Inductors

칩인덕터용 NiZnCu Ferrite의 자기적 특성 연구

  • Published : 2008.04.30

Abstract

$Ni_{0.4}Zn_{0.4}Cu_{0.2}Fe_2O_4$ ferrite was fabricated by solid stat reaction method and sol-gel method. Because of the drawbacks of each method, we combined these two methods together. We proposed and experimentally verified that nanocrystalline ferrite additive was effective on improving the densification behavior and magnetic properties of NiZnCu ferrites for multilayer chip inductors. The initial permeability of the toroidal core Sample with 20 wt% nanocrystalline ferrite increased from 78.1 to 178.2 as annealing temperature is increased from $880^{\circ}C$ to $920^{\circ}C$. The density, shrinkage and saturation magnetization were increased with increasing annealing temperature, which was attributed to the decrease of additive grain size and increase of sintering density.

칩인덕터용 $Ni_{0.4}Zn_{0.4}Cu_{0.2}Fe_2O_4$ ferrite(NiZnCu ferrite)를 고상반응법 및 졸겔법으로 제조하였다. 고상반응법에 의해 제조된 마이크론크기의 NiZnCu ferrite 분말과 졸겔법에 의해 제조된 나노크기의 분말을 혼합하여 소결성 및 자기적 특성을 증가 시켰다. 나노크기의 분말을 20wt%첨가한 토로이달 코아 시편의 초투자율은 1 MHz에서 $880^{\circ}C$ 소결시 78.1에서 $920^{\circ}C$ 소결시 178.2의 값을 가졌으며 소결온도가 증가할수록 초투자율값이 증가하였다. 소결 밀도, 수축율 및 포화자화값도 소결온도가 증가함에 따라 증가하였으며 이것은 grain사이즈 효과 및 소결성이 증가 되었기 때문이다. 고상반응법에 의해 제조한 ferrite에 졸겔법에 의해 제조한 나노크기의 ferrite 분말을 혼합하여 소결성을 향상시키고 자기적 특성을 향상시킬 수 있었다.

Keywords

References

  1. J. Murbe and J. Topfer, J. Electroceramics, 15, 215 (2005) https://doi.org/10.1007/s10832-005-3278-8
  2. H. Su, H. Zhang, X. Tang, L. Jia, and Q. Wen, Mater. Sci. Eng. B, 129, 172 (2006) https://doi.org/10.1016/j.mseb.2006.01.008
  3. H. Su, H. Zhang, and X. Tang, Mater. Sci. Eng. B, 117, 231 (2005) https://doi.org/10.1016/j.mseb.2004.11.028
  4. M. Pal, P. Brahma, and D. Chakravorty, J. Magn. Magn. Mater., 152, 370 (1996) https://doi.org/10.1016/0304-8853(95)00483-1
  5. Y. H. Jen, S. K. Wen, H. D. Shen, and C. J. Chen, IEEE Trans. Magn., 31, 3412 (1999)
  6. S. F. Wang, Y. R. Wang, T. C. K. Yang, and C. A. Lu, J. Magn. Magn. Mater., 217, 35 (2000) https://doi.org/10.1016/S0304-8853(00)00325-5
  7. M. Fujimoto, J. Am. Ceram. Soc., 77, 2873 (1994) https://doi.org/10.1111/j.1151-2916.1994.tb04517.x
  8. A. Nakano, H. Momoi, and T. Nomura, J. Jpn. Soc. of Powder and Powder Metallurgy, 39, 612 (1992) https://doi.org/10.2497/jjspm.39.612
  9. H. M. Song, C. J. Chen, W. S. Ko, and H. C. Lin, IEEE Trans. on Mag., 30, 4906 (1994) https://doi.org/10.1109/20.334261
  10. C. J. Brinker and W. Scherer, "Sol-Gel Science," Wiley, New York (1990)
  11. V. Tsakaloudi, E. Eleftheriou, M. Stoukides, and V. Zaspalis, J. Magn. Magn. Mater., 318, 58 (2007) https://doi.org/10.1016/j.jmmm.2007.04.023