DOI QR코드

DOI QR Code

Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO2-Al2O3-P2O5 (SAP) Inorganic Composite: Part 2. The Effect of SAP Composition on Stabilization/Solidification

SiO2-Al2O3-P2O5 (SAP) 무기복합체를 이용한 LiCl-KCl 방사성 폐기물의 안정화/고형화: Part 2. SAP조성에 따른 안정화/고형화특성 변화

  • Received : 2011.12.13
  • Accepted : 2012.02.08
  • Published : 2012.03.30

Abstract

Metal chloride waste is generated as a main waste streams in a series of electrolytic processes of a pyrochemical process. Different from carbonate or nitrate salt, metal chloride is not decomposed into oxide and chlorine but it is just vaporized. Also, it has low compatibility with conventional silicate glasses. Our research group adapted the dechlorination approach for the immobilization of waste salt. In this study, the composition of SAP ($SiO_2-Al_2O_3-P_2O_5$) was adjusted to enhance the reactivity and to simplify the solidification process as a subsequent research. The addition of $Fe_2O_3$ into the basic SAP decreased the SAP/Salt ratio in weight from 3 for SAP 1071 to 2.25 for M-SAP( Fe=0.1). The experimental results indicated that the addition of $Fe_2O_3$ increased the reactivity of M-SAP with LiCl-KCl but the reactivity gradually decreased above Fe=0.1. Also, introducing $B_2O_3$ into M-SAP requires no glass binder for the consolidation of reaction products. U-SAP ($SiO_2-Al_2O_3-Fe_2O_3-P_2O_5-B_2O_3$) could effectively dechlorinate the LiCl-KCl waste and its reaction product could be consolidated as a monolithic form without a glass binder. The leaching test result indicated that U-SAP 1071 was more durable than other SAPs wasteform. By using U-SAP, 1 g of waste salt could generated 3~4 g of wasteform for final disposal. The final volume would be about 3~4 times lower than the glass-bonded sodalite. From these results, it could be concluded that the dechlorination approach using U-SAP would be one of prospective methods to manage the volatile waste salt.

금속염화물계 방사성 폐기물은 전해공정으로 이루어진 파이로프로세싱공정의 주요한 방사성 폐기물이다. 이와 같은 폐기물은 탄산염이나 질산염과 달리 고온에서 분해되지 않고 바로 휘발되며, 기존의 규산계 유리와 상용성이 낮아 처리가 쉽지 않다. 본 연구팀은 금속염화물계 폐기물을 고화처리하는 방법으로 탈염화처리법을 채택하였다. 본 연구에서는 그 후속적인 연구로서, 탈염화물질로 제안된 SAP ($SiO_2-Al_2O_3-P_2O_5$)의 조성을 변화시켜 LiCl-KCl과의 반응성을 향상시키고 고화공정을 단순화시키고자 하였다. 기본물질계에 $Fe_2O_3$를 첨가할 경우 무게반응비 SAP/Salt를 3에서 2.25로 낮출수 있으며, Fe가 Al을 치환하는 몰분율이 0.1이상이 될 경우에는 오히려 반응성이 점진적으로 감소하는 것으로 확인되었다. 또한 M-SAP에 $B_2O_3$를 첨가할 경우에는 유리매질을 사용하지 않고 monolithic form을 제조할 수 있었다. 침출 시험결과 U-SAP 1071이 가장 높은 내구성을 보여주었으며, 1 g의 금속폐기물을 처리시 약 3~4 g의 고화체가 발생되며, 이는 기존의 고화처리법보다 약 $\frac{1}{3}{\sim}\frac{1}{4}$배정도 최종처분부피가 감소되는 효과를 얻을 수 있다. 이상의 실험결과로부터, 기존의 유리고화공정으로 처리가 어려운 휘발성 금속염화물계 폐기물을 단 하나의 물질을 이용하여 처리할 수 있음을 확인하였으며, 이러한 처리방법은 고화처리시 발생되는 부피를 최소화활 수 있는 대안적인 고화처리방법이 될 것으로 판단된다.

Keywords

References

  1. G. Leturcq, A. Grandjean, D. Rigaud, P. Perouty and M. Charlot, "Immobilization of Fission Products Arising from Pyrometallurgical Reprocessing in Chloride Media," Journal of Nuclear Materials, 347(1-2), pp. 1-11 (2005). https://doi.org/10.1016/j.jnucmat.2005.06.026
  2. B. A. Meltcalfe and I.W. Donald, "Candidates Wasteforms for the Immobilization of Chlorides Containing Radioactive Waste," Journal of Non-Crystalline Solids, 348, pp. 225-229 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.08.173
  3. Yu. G. Lavrinovich, M. V. Kormilisyn, I. V. Tselishchev, S. V. Tomilin and V.M. Chistyakov, "Vitrification of Chloride Waste in the Pyroelectrochemical Method of Reprocessing Irradiated Nuclear Fuel," At. Energy, 95(5), pp. 781-785 (2003). https://doi.org/10.1023/B:ATEN.0000016764.68862.5f
  4. Yu. G. Lavrinovich, M. A. Kuzin, M. V. Kormilisyn, S. V. Tomilin, E. Yu. Gribakin and L.V. Zakharova, "Combined Vitrification of Chloride and Phosphate Waste by Pyroelectrochemical Reprocessing of Nuclear Fuel," At. Energy, 101(6), pp. 894-896 (2006). https://doi.org/10.1007/s10512-006-0187-0
  5. D. Lexa, L. Leibowitz, and J. Kropf, "On the Reactive Occlusion of the (uranium trichloride+lithium chloride+potassium chloride) Eutectic Salt in Zeolite 4A," J. Nucl. Mater., 279(1), pp.57-64 (2000). https://doi.org/10.1016/S0022-3115(99)00279-2
  6. M. Lambregts and S. M. Frank, "Characterization of Cesium containing Glass-bonded Ceramic Waste Forms," Microporous Mesoporous Mater., 64(1-3), pp. 1-9 (2003). https://doi.org/10.1016/S1387-1811(03)00486-4
  7. W. L. Ebert, M. A. Lewis and S. G. Johnson, "The Precision of Product Consistency Tests Conducted with a Glass-bonded Ceramic Waste Form", J. Nucl. Mater., 305(1), pp. 37-51 (2002). https://doi.org/10.1016/S0022-3115(02)00913-3
  8. L. R. Morss, M. A. Lewis, M. K. Lichmann and D. Lexa, "Cerium, Uranium, and Plutonium Behavior in Glass-bonded Sodalite, a Ceramic Nuclear Waste Form," J. Alloys Compd., 303-304, pp. 42-48 (2000). https://doi.org/10.1016/S0925-8388(00)00601-0
  9. M. K. Richmann, D. T. Reed, A. J. Kropf, S. B. Aase and M. A. Lewis, "EXAFS/XANES Studies of Plutonium-loaded Sodalite/Glass Waste Forms," J. Nucl. Mater., 297(3), pp. 303-312 (2001). https://doi.org/10.1016/S0022-3115(01)00637-7
  10. S. Donze, L. Montagne and G. Palavit, "Thermal Conversion of Heavy Metal Chlorides ($PbCl_2$, $CdCl_2$) and Alkaline Chlorides (NaCl, KCl) into Phosphate Glasses," Chemistry of Materials, 12(7), pp. 1921-1925 (2000). https://doi.org/10.1021/cm991205d
  11. Hwan-seo Park, In-Tae Kim, Hwan-young Kim, Seung-Kon Ryu and Joon-Hyung Kim, "Solidification of Molten Salt Waste by Gel-Route Pre-treatment,"Journal of the Korean Radioactive Waste Society, 3(1), pp. 57-65 (2005).
  12. Hwan-Seo Park, In-Tae Kim, Hwan-young Kim and Joon Hyung Kim, "Stabilization of Radioactive Molten Salt Waste by Using Silica-Based Inorganic Material,"Journal of the Korean Radioactive Waste Society, 5(3), pp. 171-177 (2007).
  13. Hwan-Young Kim, Hwan-Seo Park, Kweon-Ho Kang, Byung-gil Ahn and In-Tae Kim, "A Study on Wasteform Properties of Spent Salt Treated with Zeolite and SAP," Journal of the Korean Radioactive Waste Society, 8(2), pp. 99-105 (2010).
  14. H. -S. Park, I. -T. Kim, H. -Y. Kim, S. -K. Ryu and J. -H. Kim, "Stabilization/Solidification of Radioactive Molten Salt Waste via Gel-route Pretreatment," Environ. Sci. Technol., 41(4), pp. 1345-1351 (2007). https://doi.org/10.1021/es0615472
  15. H. -S. Park, I. -T. Kim, Y. -J. Cho, H. -C. Eun and J. -H. Kim, "Characteristics of Solidified Products containing Radioactive Molten Salt Waste," Environ. Sci. Technol., 41(21), pp. 7536-7542 (2007). https://doi.org/10.1021/es0712524
  16. H. -S. Park, I. -T. Kim, Y. -J. Cho, H. -C. Eun and H. -S. Lee, "Stabilization/Solidification of Radioactive Salt Waste by Using $xSiO_2-yAl_2O_3-zP_2O_5$ (SAP) Material at Molten Salt State," Environ. Sci. Technol., 42(24), pp. 9357-9362 (2008). https://doi.org/10.1021/es802012x
  17. H. -S. Park, I. -H. Cho, H. -C. Eun I. -T. Kim, Y. -J. Cho and H. -S. Lee, "Characteristics of Wasteform Composing of Phosphate and Silicate To Immobilize Radioactive Waste Salts," Environ. Sci. Technol., 45(5), pp. 1932-1939 (2011). https://doi.org/10.1021/es1029975
  18. W. L. Ebert. Testing to Evaluate the Suitability of Waste Forms Developed for Electrometallurgically Treated Spent Sodium-Boned Nuclear Fuel for Disposal in the Yucca Mountain Repository, Chemical Engineering Division Argonne National Laboratory Report, pp. 134, ANL-05/43 (2005).

Cited by

  1. De-chlorination and solidification of radioactive LiCl waste salt by using SiO2-Al2O3-P2O5 (SAP) inorganic composite including B2O3 component vol.34, pp.9, 2017, https://doi.org/10.1007/s11814-017-0140-z
  2. An experimental study on Sodalite and SAP matrices for immobilization of spent chloride salt waste vol.499, pp.None, 2012, https://doi.org/10.1016/j.jnucmat.2017.11.051