• Title/Summary/Keyword: 조파

Search Result 511, Processing Time 0.023 seconds

Numerical Study on Extended Boussinesq Equations with Wave Breaking (쇄파구조를 고려한 확장형 Boussinesq 방정식의 수치 실험)

  • 윤종태;이창훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.3
    • /
    • pp.149-155
    • /
    • 1999
  • A treatment of wave breaking is included in the extended Boussinesq equations of Nwogu. A spatially distributed source function and sponge layers are used to reduce the reflected waves in the computa¬tional domain. The model uses fourth-order Adams predictor-corrector method to advance in time, and discretizes first-order spatial derivatives to fourth-order accuracy, and thus reducing all truncation errors to a level smaller than the dispersive terms. The generated wave fields are found to be good and the corresponding wave heights are very close to their target values. For the tests of wave breaking, although agreement is considered to be reasonable, wave heights in the inner surf zone are over-predicted. This indicates the breaking parameters in the model should be adjusted.

  • PDF

Investigation of Characteristics of Waves Generated in Two-Dimensional Wave Channel (2차원 조파수조에서의 파 생성 특성 조사)

  • Ahn, Jae-Youl;Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.68-75
    • /
    • 2013
  • This paper investigates the characteristics of waves generated by a flap-type wave maker in a two-dimensional wave channel. Measurements are carried out for various water depths, wave heights, periods, and lengths capacitance-type wave height gages. The experimental results are shown to satisfy the dispersion relation of the linear wave theory. For waves with a small height and long period, the wave profiles agree well with those of the linear wave theory. However, as the wave height and period become higher and shorter, respectively, it is shown that the wave profiles measured in the present experiments are different from the linear wave profiles, and the measured wave heights are smaller than the target wave heights, which may be due to the non-linearity of the waves. As the wave progresses toward the channel end, the wave height gradually decreases. This reduction in the wave height along the wave channel is explained by the wave energy dissipation due to the friction of the side walls of the channel. The performance of the wave absorber in the channel is found to be acceptable from the results of the wave reflection tests.

Calculation of Wave-making Resistance using Neumann-Kelvin Theory (Neumann-Kelvin 이론을 사용한 조파저항 계산)

  • S.J. Kim;S.J. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.71-79
    • /
    • 1992
  • In order to obtain the wave-making resistance of a ship, so-called the Neumann-Kelvin problem is solved numerically. For computing the Havelock source, which is the Green's function of the problem, we adopted the methods given by Newman(1987) for the term representing the local disturbance, and Baar and Price(1988) for the wave disturbance, respectively. In the numerical code we developed, the source strength is assumed as bilinear on each panel and continuous throughout the hull surface. The wave-making resistance is calculated using the algorithm of de Sendagorta and erases(1988), which makes use of the wave amplitude far downstream. The Wigley hull was chosen for the sample calculation, and our results showed a good agreement with other existing experimental and numerical results.

  • PDF

Low Noise Local Oscillator Design in K Band using Baseband Noise Upconversion Gain Analysis (저주파 잡음 상향 변화 이득 해석을 이용한 K 밴드 저잡음 국부 발진기의 설계)

  • 이영택;이문규;임종식;염인복;장동필;남상욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.3
    • /
    • pp.462-469
    • /
    • 2001
  • In this paper, local oscillator in K band using low frequency noise upconversion gain anaylsis was designed and measured. We extended Two Signal Method(TSM) to estimate upconversion gain and resulting phase noise. To confirm the validity of the proposed method, a free-running oscillator which had low upconversion gain was designed. The measured oscillation frequency was 23.42 GHz and phase noise at 1 MHz of offset was -105.2 dBc/Hz. Also, this oscillator was operated for subharmonic injection locked osci1lator(SILO). In this case, SILO showed ideal frequency multiplier phase noise characteristics at low subharmonic injection power level.

  • PDF

Calculation of Wave Resistance for a Submerged Body by a Higher Order Panel Method (고차 판요소법을 이용한 몰수체의 조파저항 계산)

  • Chang-Gu Kang;Se-Eun Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.58-65
    • /
    • 1992
  • In this paper, wave resistance for a submerged body is calculated by a higher order panel method. The Neumann-Kelvin problem is solved by the source or normal dipole distribution method. The body surface is represented by a bicubic B-spline and the singularity strengths are approximated by a bilinear form. The results calculated by the higher order panel method are compared with those by the lowest order panel method developed by Hess & Smith. The convergence rate of the higher order panel method is much better than the lowest order panel method. But the wave resistance calculated by the higher order panel method still shows discrepancy with an analytic solution at low Froude number like that by the lowest order panel method.

  • PDF

Numerical Analysis on the Wave Resistance by the Theory of Slender Ships (세장선 이론에 의한 조파저항의 수치 해석)

  • 김인철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.3
    • /
    • pp.111-116
    • /
    • 1987
  • The accurate prediction of the ship wave resistance is very important to design ships which operate satisfactorily in a wave environment. Thus, work should continue on development and validation of methods to compute ship wave patterns and wave resistance. Research efforts to improve the prediction of ship waves and wavemaking resistance are categorized in two major areas. First is the development of higher-order theories to take account of the nonlinear effect of the free surface condition and improved analytical treatment of the body boundary condition. Second is the development of direct numerical methods aimed at solving body and free-surface boundary conditions as accurately as possible. A new formulation of the slender body theory for a ship with constant speed is developed by Maruo. It is quite different from the existing slender ship theory by Vossers, Maruo and Tuck. It may be regarded as a substitute for the Neumann-Kelvin approximation. In present work, the method of asymptotic expansion of the Kelvin source is applied to obtain a new wave resistance formulation in fluid of finite depth. It takes a simple form than existing theory.

  • PDF

On the Design of Novel Hybrid Wave Generator (신형식 다기능 조파기 설계)

  • Kim, Hyochul;Oh, Jungkeun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.112-120
    • /
    • 2021
  • The novel wave generating system of a wave flume has been devised by utilizing the analytic solution of wave board motion in idealized two dimensional space. The arbitrary oscillation motion of submerged wave board segment has been defined by sinusoidal motion of upper and lower end of the wave board. The analytic solution of the wave board motion has been represented by the solution of board motion due to flap motion and swing motion. Arbitrary oscillation of the board could be specified by determining amplitude, frequency, and the phase lag. A novel hybrid wave generator could be operated not only in piston motion but also in flap or swing motion by selection of control parameter. The wave generator has unique motion enhancing ability by appending flap motion or swing motion to piston motion in wave generation. In addition the hybrid wave generator has advantages in generating high quality wave spectrum of irregular wave in simulating real sea condition.

The Interaction Index Between Grasses and Weeds in the Grassland Composed with Mainly Perennial Ryegrass (페레니얼 라이그라스 위주 초지에서 목초, 잡초 식생 군락간 상호작용)

  • Lim Keun-Bal;Sung Byung-Ryeol;Lee Hyun-Jun;Ahn Byung-Suk;Seo Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.2
    • /
    • pp.105-112
    • /
    • 2006
  • This experiment was carried out to investigate the distribution, function of dry matter and competition in the grassland composed with mainly perennial ryegrass. Co-functions between grasses and weeds were evaluated by calculating methods; expected yield (P), agressivity, relative yield total (RYT), compensation index (CI) and morphological index (MI). Each values obtained were influenced by seeding method, grassland management and seasonal changes of co-functional index were identical. Expected yields of spring were lower than those of fall and improved by additional seeding to grassland in early spring time. In the relative yield total (RYT), all were under 1.0 which ranged from 0.17 to 0.41. Compensation index (CI) ranged from -0.3 to -0.6 and all values showed 'under compensation(+, --)' This means that the conditions of 'under compensation' could be improved through weed control by management of grassland in perennial ryegrass grassland. The results indicated that productivity of grassland mainly composed with perennial ryegrass is negatively affected by weeds like shepherd's purse, crabgrass and barnyard grass. As major weeds, shepherd's purse in spring, crabgrass in summer and barnyard grass in summer and fall were negatively functioned to productivity in the grassland composed with mainly perennial ryegrass.

Numerical Simulation of Solitary Wave Run-up with an Internal Wave-Maker of Navier-Stokes Equations Model (내부조파기법을 활용한 Navier-Stokes 방정식 모형의 고립파 처오름 수치모의)

  • Ha, Tae-Min;Kim, Hyung-Jun;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.9
    • /
    • pp.801-811
    • /
    • 2010
  • A three-dimensional numerical model called NEWTANK is employed to investigate solitary wave run-up with an internal wave-maker on a steep slope. The numerical model solves the spatially averaged Navier-Stokes equations for two-phase flows. The LES (large-eddy-simulation) approach is adopted to model the turbulence effect by using the Smagorinsky SGS (sub-grid scale) closure model. A two-step projection method is adopted in numerical solutions, aided by the Bi-CGSTAB (Bi-Conjugate Gradient Stabilized) method to solve the pressure Poisson equation for the filtered pressure field. The second-order accurate VOF (volume-of-fluid) method is used to track the distorted and broken free surface. A solitary wave is first internally generated and propagated over a constant water depth in the three-dimensional domain. Numerically predicted results are compared with analytical solutions and numerical errors are analyzed in detail. The model is then applied to study solitary wave run-up on a steep slope and the obtained results are compared with available laboratory measurements.

A Study on Stable Generation of Tsunami in Hydraulic/Numerical Wave Tank (수리/수치파동수조에서 안정적인 쓰나미 조파를 위한 고찰)

  • Lee, Woo-Dong;Park, Jong-Ryul;Jeon, Ho-Seong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.805-817
    • /
    • 2016
  • This study considered the existing approximation theories of solitary wave for stable generation of it with different waveforms in a hydraulic/numerical wave tank for coping with the tsunami. Based on the approximation theory equations, two methods were proposed to estimate various waveforms of solitary wave. They estimate different waveforms and flow rates by applying waveform distribution factor and virtual depth factor with the original approximate expressions of solitary wave. Newly proposed estimation methods of solitary wave were applied in the wave generation of hydraulic/numerical wave tank. In the result, it was able to estimate the positional information signal of wave generator in the hydraulic wave tank and to find that the signal was very similar to an input signal of existing hydraulic model experiment. The waveform and velocity of solitary wave was applied to the numerical wave tank in order to generate wave, which enabled generate waveform of tsunami that was not reproduced with existing solitary wave approximation theory and found that the result had high conformity with existing experiment result. Therefore, it was able to validate and verify the two proposed estimation methods to generate stable tsunami in the hydraulic/numerical wave tank.