• Title/Summary/Keyword: 조파현상

Search Result 54, Processing Time 0.02 seconds

A Numerical Study of Nonlinear Free-surface Flows Generated by Motions of Two Dimensional Cylinders (2차원 실린더의 운동에 기인한 비선형 자유표면 유동의 수치해석)

  • Lee, Ho-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.85-98
    • /
    • 1998
  • 본 논문의 수치해법은 경계치문제를 풀기 위하여 코시이론(Cauchy's theorem)을 사용하였다. 경계치문제는 완전한 물체표면조건과 자유표면조건을 만족시키는 초기치문제로 귀결된다. 현 수치해법에서 무한영역은 수치계산 영역인 비선형 영역과 선형 자유표면조건을 만족하는 선형영역으로 나누어진다. 선형영역의 해는 과도 그린(Green)함수를 사용하여 정합조건을 부과함으로써, 수치계산은 비선형 영역에서만 수행된다. 본 논문에서 저자는 수치계산 영역에서 코시이론을 사용하여 적분방정식을 도출하였고, 무한영역의 해는 정합면에서 과도 그린함수를 사용하여 표현하였다. 본 수치계산에서 자유표면에 요소 재분배법을 적용함으로써 쇄파현상에 대해서도 안정적인 수치해석을 할 수 있었다. 본 논문에서 개발된 수치방법을 적용한 문제는 다음과 같다. 첫째는 자유표면에서 실린더가 강제동요하는 경우에 자유표면형상과 힘을 계산하여 이전의 실험치 및 계산치와 비교하였다. 두번째로는 실린더가 자유수면하에서 일정한 속도로 항주하는 경우에는 조파저항과 양력을 계산하여 고차 스펙트럴법과 비교하였다.

  • PDF

Numerical study of sway motion of a rectangular floating body with inner sloshing phenomena (내부 슬로싱 현상을 이용한 사각상자 형태의 부유체 Sway 거동 모사에 대한 수치적 고찰)

  • Ha, Minho;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.161-165
    • /
    • 2013
  • In this paper, possibility of controlling motion of a floating structure using a tuned liquid damper (TLD) is numerically investigated. A TLD is a tank partially filled with liquid. Sloshing phenomena of liquid inside a tank can suppress movement of the tank subject to external excitations at specific frequency. The effects of sloshing phenomena inside a rectangular floating body on its sway motion are investigated by varying excitation frequency. First, a grid-refinement study is carried out to ensure validity of grid independent numerical solutions using present numerical techniques. Then, sway motion of the floating body subjected to wave with five different frequencies are simulated. The normalized amplitudes of sway motion of the target floating body are compared over the frequency, for cases with and without water inside the floating body. It is shown that the motion of the floating body can be minimized by matching the sloshing natural frequency to excitation frequency.

  • PDF

무부하운전시의 철극동기기의 3상단락

  • 이면영
    • 전기의세계
    • /
    • v.10
    • /
    • pp.55-61
    • /
    • 1963
  • 본 논문에서 취급한 제동권선이 없는 철극선의 3상단락현상을 해명하는데 있어 우선 임의력율의 전류를 횡축분과 직축분으로 분리해서 취급하는 소위 Blonde의 2반작용법(two reaction method)를 썼고, 각종 Reactance를 표시하는데는 편리한 단위법(perunit notation)을 사용했으며, 전기자의 1상저항은 각종 Reactance ( $X_{x}$, $X_{q}$ )의 어느것 보담도 극소치임으로 실제계산에는 무시했으나 과도전류의 변화를 좌우하는 감쇠정수[decrement factor)에는 큰 영향을 준다는 것이 규명되었다. 해석결과로서 3상단락전류의 초기치는 특수치보다 훨씬 큰 이유로서 단락전류가 계자자속을 약하게 만들어 그 반동으로 계자회로에 일정자속을 유지하기 위하여 부문적으로 개자전류가 증대함을 알게되었고, 단락전류의 직축분과 횡축분의 구성분이 규명검토되었고, 발전기의 돌발단락저류는 일반적으로 직류분, 기본파교류분 및 제2조파등을 포함하나 그 전부가 시정수의 역수인 감쇠정수에 지배되어서 지수함수곡선에 따라 감쇠되어 결국에는 지속단락전류에 귀착한다는 사실과 3상단락은 평형단락사고임으로 영상전류는 영이며 각상과도전류의 위상차가 120.deg.라는 것엔 변함이 없다는 것과 끝으로 철극기를 정격속도로 운전해 놓고 이것을 여자해서 무부하전압을 수기시켜 그의 3상전단자를 돌연 단락해서 그의 과도전류의 파형을 Oscillograph로 촬영하면 본론에서 해석한 결과식의 그것과 일치하게 됨을 알 수 있을 것이다.것이다.

  • PDF

A Numerical Method for Nonlinear Wave-Making Phenomena (비선형 조파현상의 수치해법)

  • Jang-Whan Kim;Kwang-June Bai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.65-72
    • /
    • 1993
  • A numerical method for nonlinear free-surface-wave problem is developed in this paper. The final goal of this study is to simulate the towing tank experiment of a ship model and to partially replace the experiment by the numerical model. The exact problem in the scope of potential flow theory is formulated by a variational principle based on the classical Hamilton's principle. A localized finite element method is used in the present numerical computations which made use of the following two notable steps. The first step is an efficient treatment of the numerical radiation condition by using the intermediate nonlinear-to-linear transition buffer subdomain between the fully nonlinear and linear subdomains. The second is the use of a modal analysis in the final stage of the solution procedures, which enables us to reduce the computation time drastically. With these improvements the present method can treat a much larger computational domain than that was possible previously. A pressure patch on the free surface was chosen as an example. From the present computed results we could investigate the effect of nonlinearity on the down-stream wave pattern more clearly than others, because much larger computational domain was treated. We found, specifically, the widening of the Kelvin angle and the increase of the wave numbers and the magnitude of wave profiles.

  • PDF

Study on the Viscous Roll Damping around Circular Cylinder Using Forced Oscillations (강제동요를 이용한 원형실린더 점성 롤댐핑 연구)

  • Yang, Seung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.71-76
    • /
    • 2017
  • The roll damping problem in the design of ships and offshore structures remains a challenge to many researchers due to the fluid viscosity and nonlinearity of the phenomenon itself. In this paper, the study on viscous roll damping of a circular cylinder was carried out using forced oscillations. The roll moment generated by forced oscillation using a torque sensor was measured for each forced oscillation period and compared with the empirical formula. Although the magnitude of the measured torque from the shear force was relatively small, the results were qualitatively similar to those obtained from the empirical formula, and showed good agreement with the quantitative results in some oscillation periods. In addition, the flow around the circular cylinder wall was observed closely through the PIV measurements. Owing to the fluid viscosity, a boundary layer was formed near the wall of the circular cylinder, and a minute wave was generated by periodical forced oscillations at the free surface through the PIV measurement. In this study, the suitability of the empirical formula for the roll moment caused by viscous roll damping was verified by model tests. The wave making phenomenon due to the fluid viscosity around the wall of a circular cylinder was testified by PIV measurements.

Development of 3-D Nonlinear Wave Driver Using SPH (SPH을 활용한 3차원 비선형 파랑모형 개발)

  • Cho, Yong Jun;Kim, Gweon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.559-573
    • /
    • 2008
  • In this study, we newly proposed 3-D nonlinear wave driver utilizing the Navier-Stokes Eq. the numerical integration of which is carried out using SPH (Smoothed Particle Hydrodynamics), an internal wave generation with the source function of Gaussian distribution and an energy absorbing layer. For the verification of new 3-D nonlinear wave driver, we numerically simulate the sloshing problem within a parabolic water basin triggered by a Gaussian hump and uniformly inclined water surface by Thacker (1981). It turns out that the qualitative behavior of sloshing caused by relaxing the external force which makes a free surface convex or uniformly inclined is successfully simulated even though phase error is visible and an inundation height shrinks as numerical simulation more proceeds. For the more severe test, we also simulate the nonlinear shoaling and refraction over uniform beach of wedge shape. It is shown that numerically simulated waves are less refracted than the linear counterpart by Hamiltonian ray theory due to nonlinearity, energy dissipation at the bottom and side walls, energy loss induced by breaking, and the hydraulic jump occurring when breaking waves encounter a down-rush by the preceding wave.

The Effect of Surface Tension on the Transient Free-Surface Flow near the Intersection Point (교차점 부근의 과도자유표면유동에 미치는 표면장력의 영향)

  • Lee, G.J.;Rhee, K.P.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.104-117
    • /
    • 1991
  • When a body starts to move, the flow near the intersection point between a body and a free surface changes violently and rapidly in a very short initial time interval. This flow phenomena must be investigated whenever one treats the interaction between a body and a fluid, such as the motion of a floating body, sloshing in a tank, wave maker problem, entry of a body into a fluid etc.. Until Roberts(1987), it was widely accepted that a singularity exists at the intersection point. However, he showed that the singularity does not exist if a body moves non-impulsively. In this paper, an analytical solution cosistent for the case of impulsive motion of a body is obtained by including the effect of surface tension. From the characteristics of the newly obtained solution, a critical value associated with an oscillating phenomenon is found, and further more, it is shown that the oscillating phenomenon does not appear in the region where the distance form the intersection point is less than this critical value.

  • PDF

Development and verification of a combined method of BEM and VOF (BEM과 VOF법을 결합한 수치모델의 개발과 그 타당성 검토)

  • Kim Sang-Ho;Yannshiro Masaru;Yoshida Akinori;Hashimoto Noriaki;Lee Jong-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.153-159
    • /
    • 2005
  • Recently, various novel numerical models based on Navier-Stokes equation rave been developed for calculating wave motions in the sea with coastal or ocean structures. Among those models, Volume Of Fluid (VOF) method might be the most popular one, and it has been used for numerical simulations of wave motions including complicated phenomena of wave breakings. VOF method, however, needs enormous computation time and large computational storage memories in general, thus it is practically difficult to use VOF method for calculations in the case of random waves because long and stable computation ( e.g. for more than 100 significant wave periods) is required to obtain statistically meaningful results. On the other hand of the wave motion is potential motion, Boundary Element Method (BEM), which is a much faster and more accurate method than VOF method, am be effectively used. The aim of this study is to develop a new efficient model applicable to calculations of wave motion and/or wave-structure interactions under random waves. To achieve this, a strictly combined BEM-VOF model has been developed by making the best use of both methods' merits; VOF method is used in a restricted fluid domain around a structure where complicated phenomena of wave breakings may exist, and BEM is used in the other domains far from the disturbance where the wave motion may be assumed to be potential. The verification of the model was performed with numerical results for Stokes'5th order wave propagation and a random wave propagation.

  • PDF

Shoaling Characteristics of Boussinesq Models with Varying Nonlinearity (비선형 차수에 따른 Boussinesq 모형의 천수변형 특성)

  • Park, Seung-Min;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.121-127
    • /
    • 2008
  • Numerical experiments with weakly nonlinear MIKE21 BW module and fully nonlinear FUNWAVE model are performed to identify the nonlinear characteristics of Boussinesq models with varying nonlinearity. Generation of waves with varying amplitudes, nonlinear shoaling and wave propagation over submerged bar experiments showed the importance of nonlinear model in shallow water where nonlinearity becomes prominent. Fully nonlinear model showed the nonsymmetrical wave form more clearly and gave larger shoaling coefficients than those of weakly nonlinear model.

Numerical Investigation on Surge Motion of a Rectangular Floating Body due to Inner Sloshing Phenomena (내부 슬로싱 현상에 따른 사각상자 형태의 부유체 서지 거동에 대한 수치적 고찰)

  • Ha, Minho;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.662-668
    • /
    • 2013
  • In this paper, possibility of controlling motion of a floating structure using a tuned liquid damper (TLD) is numerically investigated. A TLD is a tank partially filled with liquid. Sloshing motion of liquid inside a tank is known to suppress movement of the tank subject to external excitations at specific frequency. The effects of sloshing phenomena inside a rectangular floating body on its surge motion are investigated by varying external excitation frequency. First, a grid-refinement study is carried out to ensure validity of grid independent numerical solutions using present numerical techniques. Then, surge motion of the floating body subjected to external wave is simulated for five different excitation frequencies of which the center frequency equals to the natural frequency of internal liquid sloshing. The normalized amplitudes of surge motion of the target floating body are compared according to the excitation frequency, for the cases with and without water inside the floating body. It is shown that the motion of the floating body can be minimized by matching the sloshing natural frequency to the excitation frequency.