• Title/Summary/Keyword: 조준 장치

Search Result 75, Processing Time 0.029 seconds

Stabilization of Elevation for Gunner Primary Sight Using Variable Structure Control (가변구조제어에 의한 조준경 고각 안정화)

  • 허남수;이정규;김주상;김중완;이만형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1649-1656
    • /
    • 1991
  • 본 연구에서는 가변구조제어에 의한 조준경 고각 안정화를 모색하였다. 이 를 위해 조준경 고각 안정화 시스템의 운동 방정식을 이용하여 가변구조제어기를 설계 하였으며 방정식을 이용하여 가변구조제어기를 설계하였으며 실제 주행시험결과 측정 된 차량의 각속도를 외란으로 사용하여 컴퓨터 시뮬레이션하여 가변구조제어에 의한 조준경 고각 안정화가 동적안정도를 충족시킴을 보였다.

Auto-Guiding System Test Using the Finder of the 2.1m Otto Struve Telescope

  • O, Yeong-Seok;Park, Su-Jong;Park, Won-Gi;Baek, Gi-Seon;Im, Myeong-Sin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.132.1-132.1
    • /
    • 2011
  • 2.1m Otto Struve 망원경은 미국 McDonald 천문대에 있는 광학망원경으로, 초기우주천체 연구단은 현재 카세그레인 초점에 CQUEAN(Camera for QUasars in EArly uNiverse) 시스템을 부착하여 장기 관측 과제를 수행 중이다. 향후 주 초점을 이용한 관측에 대비하여 본 연구에서는 2.1m Otto Struve 망원경의 파인더에 FLI 4K CCD를 부착하여 자동조준 시스템 테스트를 수행하였다. 파인더 망원경의 제원은 구경 254mm, 초점거리 3038mm이며, FLI 4K CCD의 제원은 해상도 $4096{\times}4096$ 화소, 화소 크기 $9{\mu}m{\times}9{\mu}m$로서, 파인더 망원경 초점면에서 픽셀스케일 0.61"/pixel, 시야 $41.6'{\times}41.6'$이다. 자동조준 소프트웨어는 McDonald 천문대의 agdr-1.14를 사용하였다. 자동조준 카메라(4K CCD)의 영상을 통해 파인더 망원경에서의 시야와 한계등급을 구하였다. 여러 방향으로 망원경을 조준하여 2.1m 망원경에 부착된 CQUEAN과 파인더 망원경에 부착된 4K CCD 각각에서 영상을 얻고, 이들의 중심좌표를 비교함으로써 중력에 의한 망원경의 휨 효과를 조사하였다. 더하여 자동조준 설정을 바꿔가며 CQUEAN으로 NGC 6633의 장기 노출 영상을 얻고, 이들 영상에서 별 모양 특성을 분석하여 각각의 조건에서 자동조준 시스템의 성능을 조사하였다. 이상의 연구결과를 토대로 2.1m Otto Struve 망원경의 주 초점 관측 시 파인더 망원경을 이용한 자동조준장치 시스템 활용에 대해 제언하고자 한다.

  • PDF

Development of Day and Night Scope with BS Prism (BS 프리즘을 이용한 주야 조준경 개발)

  • Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.3
    • /
    • pp.339-344
    • /
    • 2014
  • Purpose: This study relates to the development of the day and night scope using the reflecting surface of a BS (beam splitting) prism. Methods: We have placed the LCD panel and the dot reticle generator to the top and bottom of the reflecting surface of the BS prism, and have placed a reflector, which is designed to doublet type, in the front of the BS prism. Doing so, we have developed a new type of day and night scope, which is able to image the virtual image of dot reticle from the dot reticle generator to the direction of the observer, to make the observer survey the peripheral information of the outside target by 1x magnification, and to make the observer survey the image of the LCD panel directly. Results: We could develope a new type of day and night scope, which has the function of night scope as thermal image display device at night time and the function of day scope as dot sight at day time, by letting the reflective surface of the BS prism have the role of dot sight which reflects the dot reticle and have the role of reflective optical system by which the observer surveys the night thermal image displayed in LCD panel. Conclusions: In this study, we have developed the new type of day and night scope which is able to play the role of the day or night scope selectively, combining the existing dot sight and the existing night scope by using the BS prism. By doing so, we could design and fabricate the new type of day and night scope with the BS prism which can further increase the rapidity of firing and provide more convenience in the mounting of a firearm than the detachable combination of an existing dot sight and an existing night scope.

3-D Conformal Radiotherapy for CNS Using CT Simulation (입체조준장치를 이용한 중추신경계의 방사선 입체조형치료 계획)

  • 추성실;조광환;이창걸
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.90-98
    • /
    • 2003
  • Purpose : A new virtual simulation technique for craniospinal irradiation (CSI) that uses a CT-simulator was developed to improve the accuracy of field and shielding placement as well as patient positioning. Materials and Methods : A CT simulator (CT-SIM) and a 3-D conformal radiation treatment planning system (3D-CRT) were used to develop CSI. The head and neck were immobilized with a thermoplastic mask while the rest of the body was immobilized with a Vac-Loc. A volumetric image was then obtained with the CT simulator. In order to improve the reproducibility of the setup, datum lines and points were marked on the head and body. Virtual fluoroscopy was performed with the removal of visual obstacles, such as the treatment table or immobilization devices. After virtual simulation, the treatment isocenters of each field were marked on the body and on the immobilization devices at the conventional simulation room. Each treatment fields was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR) and digitally composited radiography (DCR) images from virtual simulation. Port verification films from the first treatment were also compared with the DRR/DCR images for geometric verification. Results : We successfully performed virtual simulations on 11 CSI patients by CT-SIM. It took less than 20 minutes to affix the immobilization devices and to obtain the volumetric images of the entire body. In the absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with simulation films to within 5 mm. This not only reducee inconveniences to the patients, but also eliminated position-shift variables attendant during the long conventional simulation process. In addition, by obtaining CT volumetric image, critical organs, such as the eyes and the spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. Differences between the DRRs and the portal films were less than 3 m in the vertebral contour. Conclusion : Our analysis showed that CT simulation of craniospinal fields was accurate. In addition, CT simulation reduced the duration of the patient's immobility. During the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall, it has improved staff efficiency and resource utilization by standard protocol for craniospinal irradiation.

  • PDF

Development of Dot Sight with 2× Magnification (2× 배율 도트사이트 장치의 개발)

  • Lee, Dong-Hee;Park, Seung-Hwan
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.4
    • /
    • pp.435-440
    • /
    • 2012
  • Purpose: The purpose of this study is developing the dot sight with a $2{\times}$ magnification. Methods: To magnify the target when we see the far through the non-magnified dot sight, we develop the new optical device which is detachable to the non-magnified dot sight. A new optical device is designed to facilitate the transition of an existing non-magnification ($1{\times}$) dot sight to the $2{\times}$ magnification dot sight. Results: We could design and fabricate the $2{\times}$ afocal optical system which is detachable to the non-magnified dot sight and be composed by a pair of doublet. When the system developed in this study was used, we could aim the external target by twice magnification, so we could further improve the accuracy of aim. Conclusions: We could design and manufacture the $2{\times}$ afocal optical system which can be detachable to the non-magnified dot sight. With the results, we could aim the external target by twice magnification, so we could further improve the accuracy of aim.