• Title/Summary/Keyword: 조종성

Search Result 864, Processing Time 0.034 seconds

The Effects of Rudder Size on Characteristics of Fluid Flow around Ship's Stern in Manoeuvring Motion (타의 크기가 조종운동시 선미 유동 특성에 미치는 영향)

  • 손경호;김용민
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • It is well known that, especially in the case of full-bodied ship, the course stability may become the severest among 4 items of requirement in Interim Standards for Ship Manoeuvrability adopted by IMO in 1993. The purpose of this study is to find some ideas for characteristics of fluid flow pattern around ship's stern in manoeuvring motion with parameter of changes in rudder size. We carried out two kinds of model experiment in obliquely running condition at circulating water channel. One is measurement on straightening effect of incoming flow to rudder and the other is experiment on flow visualization around the gap between rudder and stern-bottom. We discuss the correlation between the flow characteristics around ship's stem and flow straightening effect at rudder from the viewpoint of course stability. As a result, it is clarified that the gap between rudder and stern-bottom plays an important role in course stability of full-bodied ship. It is pointed out that there is quite a possibility of bad course stability as the gap between rudder and stern-bottom decreases.

  • PDF

Study on the Manoeuvring Characteristics of a Ship with Stern Bulb (선미벌브를 갖는 선박의 조종특성에 관한 연구)

  • Kyoung-Ho Sohn;Gyoung-Woo Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.65-79
    • /
    • 1994
  • In the present paper, An emphasis is laid upon effects of stern bulb on hydrodynamic property and manoeuvring performance. We carried out captive model tests in circulating water channel with two ship models of which the frame lines of aft bodies are different. such as normal stern form and stern form with bulb, but of which the other parts are exactly same. The tests conducted consist of hull resistance test, effective thrust measurement, oblique tow test, and measurements of factors related to rudder force. From the results of model tests, we discussed effects of stern bulb on hull forces and on hull-propeller-rudder interactions, comparing with normal stern form. Furthermore, we also discussed effects of stern bulb on course stability. turning ability. spiral characteristics and zig-zag manoeuvre by computer simulation. As a result, it is clarified that the adoption of stern bulb makes course stability the worse and turning ability the better. The difference of the hydrodynamic derivatives of naked hull between two ship forms cause the worse course stability of the ship with stern bulb. The differences of the effective inflow velocity to rudder and hull forces induced by steered rudder cause the better turning ability of the ship with stern bulb.

  • PDF

A Study on Ship Motion Measurement System Using ADIS16480 Inertial Measurement Unit (ADIS16480 관성측정장치를 이용한 선체 운동 측정 시스템에 관한 연구)

  • Kim, Daejeong;Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.270-270
    • /
    • 2019
  • Although the Inertial Measurement Unit is applied to a variety of applications such as ships, submarines, and aircrafts, it is mainly used in the attitude measurement area. But since such equipment is expensive, it has been used only in special fields. In this study, the ship's seaworthiness is verified by measuring the speed, direction, gravity, and acceleration of the ship in real time using a low-cost Inertial Measurement Unit. A research method for estimating fIuid force coefficients was devised. Therefore, this study measured ship motion factors at sea, processed and analyzed the measured data, and evaluated the overall safety of the ship and estimated the resistance and steering performance of the ship.

  • PDF

A Study on Estimation Technique of Manoeuvring Difficulty Using the Ship Manoeuvre Simulator for Berthing/Deberthing (선박 접이안 조종 시뮬레이터를 이용한 조종위험도 평가 기법에 관한 연구)

  • Yang Seung-Yeul;Sohn Kyoung-Ho;Lee Hee-Yong;Ha Mun-Keun;Kim Hyun-Soo;Lee JIn-Ho;Im Nam-Kyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.81-87
    • /
    • 2004
  • It includes the considerable concentration and dangerousness as the peculiar work of a pilot and dock-master to berthing/deberthing the big object as for the ship within the port or the ship yard. A tug utilization is getting increased in this berthing/deberthing work and the own ship is affected a lot by external force due to moving with low advance speed. In this study, we constructed the 2 dimension virtual system which can conduct the berthing/deberthing manoeuvring work by using mainly tugs in a external force, particularly strong wind. Also, propose objective standard that could estimate the degree of manoeuvring difficulty, and conducted simulation experiment for this. we analyzed correlations between the subjective estimation which is described numerically the decreased dangerousness and the objective index which is related to the main parameter regarding manoeuvring by using this simulator from the result of conducting simulation experiment. And then we discussed the estimation technique of manoeuvring difficulty.

  • PDF

A Study on Evaluation Technique of Manoeuvring Difficulty by Using the Ship Manoeuvre Simulator for Berthing/Deberthing (선박 접이안 조종 시뮬레이터를 이용한 조종위험도 평가 기법에 관한 연구)

  • Yang Seung-Yeul;Sohn Kyoung-Ho;Lee Hee-Yong;Ha Mun-Keun;Kim Hyun-Soo;Lee Jin-Ho;Im Nam-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.29 no.3 s.99
    • /
    • pp.189-194
    • /
    • 2005
  • The berthing/deberthing manoeuvring operation is the peculiar work owned to the marine pilot and the dock master. So, in the port or the shipyard, the berthing/deberthing manoeuvring operation requires considerable concentration and bears dangerousness. In that situation, a tug utilization is getting increased and the external forces have an effect on the own ship because of moving with low advance speed. In this study, we constructed the 2-dimensional virtual ship manoeuvring simulator system with which we can carry out the berthing/deberthing manoeuvring operation by using tugs in the external forces such as strong wind. And then, we propose the objective indexes by which the degree of manoeuvring difficulty evaluated. Using the present system, we carry out manoeuvring simulation experiment in order to grasp correlation between the objective indexes proposed here and the def{ree of manoeuvring difficulty felt by operator. Lastly, we discuss the evaluation technique of manoeuvring difficulty.

Preliminary Evaluation of Handling Qualities of a SAR(Search & Rescue) Helicopter Simulator Based on ADS-33 Requirements (ADS-33 평가기준에 따른 소방헬기 비행시뮬레이터의 비행조종성 예비평가)

  • Yoon, Sugjoon;Kim, Donghyun;Seong, Eunhye;Park, Taejun;Hwang, Hoyon;Ahn, Jon;Lee, Junghoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.796-805
    • /
    • 2016
  • As a part of the first stage in the helicopter flight simulator development, this study numerically evaluates handling qualities of the dynamics model. The flight dynamics model was generated using public information for AS365 N2, the target aircraft of the simulator. The flight simulator is under development as a pilot training and research tool for firefighting missions. The assessment of the model intends to validate general characteristics and suitability before the model is enhanced with flight test data. The evaluation is based on the ADS-33E-PRF(Aeroautical Design Standard Performance Specification Handling Qualities Requirement) criteria, with consideration of category of the aircraft, missions, and environment. The numerical operations follow required or recommended procedures of flight test for compliance demonstration. Evaluation results are evaluated according to the rating specified in maneuverability ADS-33E-PRF. Results have identified to provide a satisfactory platform for flight dynamic model in the general helicopter simulator generated based on the RotorLibFDM, and can be used as a base for basic training and research.

Design of an integrated Chassis Controller for the Improvement of Vehicle Dynamic Characteristics (차량의 동특성 향상을 위한 통합 샤시 제어기의 설계)

  • Lee, Sin-Won;An, Tae-Hwan;An, Hyeon-Sik;Lee, Un-Seong;Kim, Do-Hyeon;Kim, Sang-Seop
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.9
    • /
    • pp.43-52
    • /
    • 1998
  • In this paper, a novel type of an integrated controller is designed for vehicles equipped with active classis systems to improve vehicle stability, handling, and ride comfort. The hybrid fuzzy logic controller consists of a fuzzy logic controller, a skyhook controller, an attitude controller, and a roll moment distribution controller, and these controllers are used with a proper combination which is determined by the integrated control logic based on driving conditions of a vehicle. It is shown by simulations using MATRIXx/SYSTEMBBUILD software that ride comfort, handling, and active safety are improved for a 16 degree-of-freedom vehicle dynamic model.

  • PDF

Study on the Remote Controllability of Vision Based Unmanned Vehicle Using Virtual Unmanned Vehicle Driving Simulator (가상 무인 차량 시뮬레이터를 이용한 영상 기반 무인 차량의 원격 조종성 연구)

  • Kim, Sunwoo;Han, Jong-Boo;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.525-530
    • /
    • 2016
  • In this paper, we proposed an image shaking index to evaluate the remote controllability of vision based unmanned vehicles. To analyze the usefulness of the proposed image-shaking index, we perform subjective tests using a virtual unmanned vehicle driving simulator. The developed driving simulator consists of a real-time multibody dynamic software of the unmanned vehicle, a motion simulator, and a driver console. We perform dynamic simulations to obtain the motion of the unmanned vehicle running on the various road surfaces such as ISO roughness level A~E roads. The motion of the vehicle body is reflected in the motion simulator. Then, to enable remote control operation, we offer to operators the image data that was measured using the camera sensor on the simulator. We verify the usefulness of the proposed image-shaking index compared with subjective index provided by operators.

A Study on Improvement of Aircraft Handling Quality for Asymmetric Loading Configuration (비대칭 무장 형상의 조종성 개선에 관한 연구)

  • Kim, Chong-Sup;Bae, Myung-Whan;Hwang, Byung-Moon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.106-112
    • /
    • 2005
  • Modern versions of supersonic jet fighter aircraft have several different weapon loading configuration to support air-to-air combat and air-to-ground delivery of weapon modes. These various aircraft loading conditions could result in asymmetric configurations to the aircraft once delivered. These asymmetric configurations could result in decreased handling qualities for the pilot maneuvering, stability, control issues and aerodynamic performance of the aircraft. In order to eliminate or decrease these adverse impacts on the pilot's ability, development of T-50 flight control law attempts to control the aircraft in both longitudinal and lateral-directional axes. Especially, the design of the lateral-directional roll axis control laws, utilizing a simple roll rate feedback structure and gains such as F-16, is developed for the T-50 aircraft to meet the aircraft's design requirements. Consequently, it is found that the improved control law decreases the roll-off phenomenon in lateral axes during pitch maneuver.