• Title/Summary/Keyword: 조인트 설계

Search Result 159, Processing Time 0.026 seconds

Fracture Mechanical Characterization of Bi-material Interface for the Prediction of Load Bearing Capacity of Composite-Steel Bonded Joints (복합재료-탄소강 접착제 결합 조인트의 하중지지 능력 예측을 위한 이종 재료 접합 계면의 파괴 역학적 분석)

  • Kim, Won-Seok;Shin, Kum-Chel;Lee, Jung-Ju
    • Composites Research
    • /
    • v.19 no.4
    • /
    • pp.15-22
    • /
    • 2006
  • One of the primary factors limiting the application of composite-metal adhesively bonded joints in structural design is the lack of a good evaluation tool for the interfacial strength to predict the load bearing capacity of boned joints. In this paper composite-steel adhesion strength is evaluated in terms of stress intensity factor and fracture toughness of the interface corner. The load bearing capacity of double lap joints, fabricated by co-cured bonding of composite-steel adherends has been determined using fracture mechanical analysis. Bi-material interface comer stress singularity and its order are presented. Finally stress intensities and fracture toughness of the wedge shape bi-material interface corner are determined. Double lap joint failure locus and its mixed mode crack propagation criterion on $K_1-K_{11}$ plane have been developed by tension tests with different bond lengths.

Numerical Analysis for Dynamic Behavioral Characteristics of Submerged Floating Tunnel according to Shore Connection Designs (지반 접속부 설계에 따른 수중터널의 동적 거동 특성에 대한 수치해석적 연구)

  • Seok-Jun, Kang;Joohyun, Park;Gye-Chun, Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • Submerged floating tunnels must be connected to the ground to connect continents. The displacement imbalance at the shore connection between the underground bored tunnel and submerged floating tunnel can cause stress concentration, accompanying a fracture at the shore connection. The elastic joint has been proposed as a method to relive the stress concentration, however, the effect of the elastic joints on the dynamic behavior should be evaluated. In this study, the submerged floating tunnel and shore connection under dynamic load conditions were simulated through numerical analysis using a numerical model verified through a small-scaled physical model test. The resonant frequency was considered as a dynamic behavioral characteristic of the tunnel under the impact load, and it was confirmed that the stiffness of the elastic joint and the resonant frequency exhibit a power function relationship. When the shore connection is designed with a soft joint, the resonant frequency of the tunnel is reduced, which not only increases the risk of resonance in the marine environment where a dynamic load of low frequency is applied, but also greatly increases the maximum velocity of tunnel when resonance occurs.

A Study on the High-power Low-loss Dual Axes Waveguide Rotary Joint for Ka-Band Millimeter-Wave Small Radar (밀리미터파대역(Ka-대역)소형 레이더용 고 전력 저 손실 2축 도파관 로터리 조인트 연구)

  • Jung, Chae-Hyun;Sung, Jong-Hyun;Baek, Jong-Gyun;Lee, Kook-Joo;Park, Chang-Hyun;Kwon, Jun-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.91-96
    • /
    • 2018
  • In this paper, dual axes waveguide rotary joint, which operates at high power and has low loss characteristic, is designed and fabricated for a Ka-band millimeter-wave small radar. Its electrical performance is verified through the S-parameter at room temperature, high power and operation temperature test. Rotary joint functionally consists of the mode converter transforming rectangular waveguide into circular waveguide and the choke at the rotation part. At the configuration design, linking a fixed transmitter to an antenna rotating dual axes electrically for minimum loss and light weight body are considered. In Fc(center frequency)${\pm}500MHz$, the designed rotary joint has VSWR 1.5:1 below return loss, -2.0 dB above insertion loss. It is found that rotary joint characteristics is similar to design results.

A P-type Iterative Learning Controller for Uncertain Robotic Systems (불확실한 로봇 시스템을 위한 P형 반복 학습 제어기)

  • 최준영;서원기
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.3
    • /
    • pp.17-24
    • /
    • 2004
  • We present a P-type iterative learning control(ILC) scheme for uncertain robotic systems that perform the same tasks repetitively. The proposed ILC scheme comprises a linear feedback controller consisting of position error, and a feedforward and feedback teaming controller updated by current velocity error. As the learning iteration proceeds, the joint position and velocity mrs converge uniformly to zero. By adopting the learning gain dependent on the iteration number, we present joint position and velocity error bounds which converge at the arbitrarily tuned rate, and the joint position and velocity errors converge to zero in the iteration domain within the adopted error bounds. In contrast to other existing P-type ILC schemes, the proposed ILC scheme enables analysis and tuning of the convergence rate in the iteration domain by designing properly the learning gain.

Interfacial Fracture Toughness Measurement of Composite/metal Bonding (복합재료/금속 접착 계면의 파괴인성치 측정)

  • Kim, Won-Seock;Lee, Jung-Ju
    • Composites Research
    • /
    • v.21 no.4
    • /
    • pp.7-14
    • /
    • 2008
  • Prediction of the load-bearing capacity of an adhesive-bonded Joint is of practical importance for engineers. This paper introduces interface fracture mechanics approach to predict the load-bearing capacity of composite metal bonded joints. The adhesion strength of composite/steel bonding is evaluated in terms of the energy release rate of an interfacial crack and the fracture toughness of the interface. Virtual track closure technique (VCCT) is used to calculate energy release rates, and hi-material end-notched flexure (ENF) specimens are devised to measure the interfacial fracture toughness. Bi-material ENF specimens gave consistent mode II fracture toughness $(G_{IIc})$ values of the composite/steel interface regardless of the thickness of specimens. The critical energy release rates of double-lap joints showed a good agreement with the measured fracture toughness. Therefore. the energy-based interfacial fracture characterization can be a practical engineering tool for predicting the load-bearing capacity of bonded joints.

Evaluation of Chloride Diffusion Coefficients in Cold Joint Concrete Considering Tensile and Compressive Regions (인장 및 압축영역에서 콜드조인트 콘크리트의 염화물 확산계수 평가)

  • Mun, Jin-Man;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.481-488
    • /
    • 2016
  • Concrete member has been subjected to dead and live loads in use, and the induced stress can affect not only structural but also durability behavior. In mass concrete construction, construction joint are required, however cold joint usually occur due to poor surface treatment and delayed concrete placing. The concrete with joint is vulnerable to both shear stress and chloride ingress. This paper presents a quantitative evaluation of cold joint and loading conditions on chloride diffusion behavior. With increasing tensile stress from 30% to 60%, chloride diffusion coefficient gradually increases, which shows no significant difference from result in the sound concrete. However chloride diffusion coefficient under 30% level of compressive stress significantly increases by 1.70 times compared with normal condition. Special attention should be paid for the enlarged diffusion behavior cold joint concrete under compressive stress.

Evaluation of Statistical Fatigue Life of Hybrid Composite Joints in Low-Floor Bus (저상버스용 하이브리드 복합재 조인트부의 통계적 피로수명평가)

  • Jung, Dal-Woo;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1705-1713
    • /
    • 2010
  • The reliable fatigue life for hybrid composite joint structures was estimated by a statistical method for evaluating fatigue life; the results of the fatigue test varied widely. Cyclic bending tests were performed on a cantilever beam with a hybrid composite joint, which was developed for the body of a low-floor bus. In order to estimate the fatigue life of the hybrid composite joint structure by comparing the data obtained during the fatigue tests, the most suitable probabilistic density function among the normal, lognormal, and Weibull distributions was selected. The probabilistic-stress-life (P-S-N) curves calculated by using the selected Weibull distribution was suggested for process of statistical fatigue life estimation and reliability design.

Robust control design applicable to general flexible joint manipulators (일반적인 유연조인트 로봇에 부합되는 견실제어설계)

  • Kim, Dong-Hwan;Chen, Ye-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.10-18
    • /
    • 1998
  • 불확실한 변수와 비선형성을 가지는 유연조인트 로봇의 견실제어 방안을 제시한다. 그리고 본 시스템에서 불확실구조는 일치성을 유지하지 않는 불일치성 불확실 시스템이다. 제어기는 리아노프의 방안에 근거를 두고있다. 견실제어는 연산토크법을 사용하고 삽입제어기법을 통하여 좌표변환을 통해 구성된다. 제어기 설계과정은 우선 연산토크방법에 의해 시스템 동역학에서 정격부분을 선형으로 2개의 부분시스템으로 구성한다. 이후 좌표변환을 이용하여 각 부분시스템에 제어기를 구축한다. 이 방안을 통하여 관성 행렬이 알려진 값인 경우 이 행렬의 상위한계 조건없이 제어기를 설계할 수 있다. 따라서 임의의 형태의 로봇에도 적용 가능한 제어알고리즘이 된다. 설계된 견실제어는 변환된 시스템이나 원시스템 모두 실용적 안정성을 보장한다. 이 변환은 단지 불확실변수의 최대 한계값의 정보만을 요구한다.

  • PDF

Prediction of Structural Performance of an Automotive Ball Joint (자동차용 볼조인트의 구조적 성능 예측)

  • Kim, Seong-Uk;Jeong, Gyeong-Il;Lee, Kwon-Hee;Lee, Dong-Jin;Lee, Myeong-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.705-713
    • /
    • 2018
  • An automotive ball joint connects the suspension system to the steering system and helps to enable rotational and linear motion between the two elements for steering. This study examines a ball joint used in medium and large-sized pickup trucks. Ball joints consist of a stud, socket, bearing, and plug. The main structural performance metrics of ball joints are the pull-out strength and push-out strength. These structural parameters must meet certain criteria to avoid serious accidents. Test and simulation methods are used to investigate the design requirements, but tests are time-consuming and costly. In this study, we modeled ball joints in SolidWorks and performed a finite element analysis in Abaqus to predict structural performance. The analysis was used to obtain the structural performance required for the static analysis of a 2D axisymmetric model. The uncertainties in the manufacturing of the ball joint were assumed to be the manufacturing tolerances, and the dimensional design variables were identified through case studies. The manufacturing tolerances at each level were defined, and the results were compared with experimental results.

Evaluation on the Deformation Capacity of RC Frame Structure with Strong Column-Weak Beam (강한 기둥-약한 보로 설계된 철근 콘크리트 골조구조의 변형성능 평가에 관한 연구)

  • Seo, Soo-Yeon;Lee, Li-Hyung;Chin, Se-Ok;Choi, Yun-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.225-233
    • /
    • 2003
  • Recently, the concern for displacement-based design has been increased as a performance based design method in which the deformation capacity of structure becomes so important. In this paper, a process is presented to accurately evaluate the deformation capacity of multistory RC frame structure. In the calculation of drift of frame, the deformation of beam and column as well as the deformation of anchorage and joint are considered. From the comparison between previous test and calculation results, the usefulness of the process is verified. The proposed process is also applied to the multiple story RC frame buildings(5, 10, 15 stories) designed to have strong column-weak beam. The results showed that the deformation capacity of the buildings could be not properly evaluated when deformations of anchorage and joint were ignored.