• Title/Summary/Keyword: 조류 발생 구간

Search Result 62, Processing Time 0.022 seconds

Analysis of Water Quality factor and Correlation between Water Quality and Chl-a in Middle and Downstream Weir Section of Nakdong River (낙동강 중·하류 보 구간의 수질특성 및 Chl-a와 수질인자의 상관관계 분석)

  • Jung, Sun-Young;Kim, Il-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.2
    • /
    • pp.89-96
    • /
    • 2017
  • This study analyzed the characteristics of water quality and the correlation between Chl-a and water quality factors among four weirs located in the middle and downstream of Nakdong River for five years. The concentration of nutrients and Chl-a from DS to CH was higher than that of GG, which is considered to be due to the influx of Kumho River located at upstream of DS. There was a significant correlationship between Chl-a and most of the water quality factors for all season data. Based on the comparison results between all season data and summer season data, a negative correlation between Chl-a and nutrients ($PO_4-P$, $NH_3-N$) was increased. Based on analysis on summer in 2015 with relatively low precipitation and high algal blooms, the correlation between Chl-a and $PO_4-P$ at all sites were increased. Therefore phosphorus is an important factor in the river on summer season. And PCA results showed the first factor was classified as T-N, $NO_3-N$ for all seasons, and the first factor was classified as T-P, $PO_4-P$ for summer seasons. Consequently, the middle and downstream of Nakdong River were most affected by nutrients, especially it was affected by phosphorous pollutants rather than nitrogen pollutants during summer seasons.

Evaluation Methods for the Removal Efficiency of Physical Algal Removal Devices (물리적 녹조 제거 장치의 제거 효율 평가 방안)

  • Pyeol-Nim Park;Kyung-Mi Kim;Young-Cheol Cho
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.419-430
    • /
    • 2023
  • In response to the periodic occurrence of cyanobacterial blooms in Korean freshwaters, various types of cyanobacteria removal technologies are being developed and implemented. Due to the differing principles behind these technologies, it is difficult to compare and evaluate their removal efficiencies. In this study, a standardized method for evaluating cyanobacteria removal efficiency was proposed by utilizing the results of removal operations using a mobile cyanobacteria removal device in the Seohwacheon area of Daechung Reservoir. During removal operations, the decrease in chlorophyll-a (chl-a) concentration (ΔChl-a) in the working area was calculated based on the amount of collected sludge, the efficiency rate, and the concentration of chl-a. Additionally, the required working days (WD) to reduce the chl-a concentration to 1 mg/m3 in the target area was calculated based on the area of the target zone, the maximum daily working area, and the efficiency rate. A method for calculating the cyanobacteria removal capacity was proposed based on the reduction rate of chl-a concentration in the water before and after the operation, the treatment capacity of the removal technology, and the water volume of the target area. The cyanobacteria removal capacity of the mobile cyanobacteria removal device used in this study was 6.64%/day (targeting the Seohwacheon area of Daechung Reservoir, approximately 500,000 m2), which was higher compared to other physical or physicochemical cyanobacteria removal technologies (0.02~4.72%/day). Utilizing the evaluation method of cyanobacteria removal efficiency presented in this study, it will be possible to compare and evaluate the cyanobacteria removal technologies currently being applied in Korea. This method could also be used to assess the performance and efficiency of physical or physicochemical combined cyanobacteria removal techniques in the "Guidelines for the Installation and Operation of Algae Removal Facilities and the Use of Algae Removal Agents" operated by the National Institute of Environmental Research.

Analysis of Vegetation Variation after the Rehabilitation Treatment of Stream (자연형 하천 공법 적용후의 식생변화분석 - 서울시 양재천의 학여울 구간을 중심으로 -)

  • Shin, Joung-Yi
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.3
    • /
    • pp.10-17
    • /
    • 1999
  • In order to confirm the effectiveness of the natural river improvement technique, the analysis of vegetation was carried out in Yangjae stream between 1996 and 1998. The results of this study showed the numbers of riparian plants had increased from 41 species to 53 species, and the dominant species had changed from annual and biannual(Humulus japonicus, Persicaria thunbergii, Persicaria hydropiper, Panicum dichotomiflorum, Echinochloa crus-galli) to perennials (Phragmites communis). The variation in biomass and biodiversity index were measured and calculated according to the rehabilitation method. Biomass were varied 302 to $828g/m^2$ and biodiversity index was varied 1.53 to 1.52 at point bar plots(A treatment plots) from 1996 to 1998. In conclusion, the natural river improvement technique which has operated in Yanjaecheon for three years has contributed to restoration of riparian plants. Additionally, subsequent study using this technique should be followed in the near future.

  • PDF

Evaluation of Eutrophication and Control Alternatives in Sejong Weir using EFDC Model (EFDC 모델에 의한 세종보의 부영양화 및 제어대책 평가)

  • Yun, Yeojeong;Jang, Eunji;Park, Hyung-Seok;Chung, Se-Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.548-561
    • /
    • 2018
  • The objectives of this study were to construct a three-dimensional (3D) hydrodynamic and water quality model (EFDC) for the river reach between the Daecheong dam and the Sejong weir, which are directly affected by Gap and Miho streams located in the middle of the Geum River, and to evaluate the trophic status and water quality improvement effect according to the flow control and pollutant load reduction scenarios. The EFDC model was calibrated with the field data including waterlevel, temperature and water quality collected from September, 2012 to April, 2013. The model showed a good agreement with the field data and adequately replicated the spatial and temporal variations of water surface elevation, temperature and water quality. Especially, it was confirmed that spatial distributions of nutrients and algae biomass have wide variation of transverse direction. Also, from the analysis of algal growth limiting factor, it was found that phosphorous loadings from Gap and Miho streams to Sejong weir induce eutrophication and algal bloom. The scenario of pollutant load reduction from Gap and Miho streams showed a significant effect on the improvement of water quality; 4.7~18.2% for Chl-a, 5.4~21.9% for TP at Cheongwon-1 site, and 4.2~ 17.3% for Chl-a and 4.7~19.4% for TP at Yeongi site. In addition, the eutrophication index value, identifying the tropic status of the river, was improved. Meanwhile, flow control of Daecheong Dam and Sejong weir showed little effect on the improvement of water quality; 1.5~2.4% for Chl-a, 2.5~ 3.8% for TP at Cheongwon-1 site, and 1.2~2.1% for Chl-a and 0.9~1.5% for TP at Yeongi site. Therefore, improvement of the water quality in Gap and Miho streams is essential and a prerequirement to meet the target water quality level of the study area.

Case Study of Improvement against Leakage of a Sea Dike under Construction (해안제방 시공 중 해수유입에 대한 차수보강 사례분석)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Kim, Hong-Yeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.95-103
    • /
    • 2015
  • In this study, the causes and countermeasures for the leakage of a sea dyke under construction are analyzed. In general, the seabed ground is clearly divided from the embankment but a lot of parts show abnormal zones with low resistivity from the results of electric resistivity survey. Hence the causes of the leakage are considered as following: three-dimensional shear strain behavior, irregular compulsory replacement of the soft seabed ground with low strength and quality deterioration of the waterproof sheets during the closing process. The improvement method is determined by considering the constructability in the seawater and its velocity condition, durability, economic feasibility, similar application cases and so on. Consequently, a combination of low slump mortar and slurry grouting and injection method is selected as an optimum combination. Mixing ratio and improvement pattern are determined after drilling investigation and pilot test. The improvement boundary is separated into general and intense leakage area. The construction is performed with each pattern and the improvement effects are confirmed. The confirmed effects with various tests after completion show tolerable ranges for all of the established standards. Finally, various issues such as prediction of length of the waterproof sheet, installation of it against seawater velocity, etc. should be considered when sea dykes are designed or executed around the western sea which has high tide difference.

Effects of Temperature and Salinity on the Growth and Paralytic Shellfish Toxin (PST) Production by Toxic Dinoflagellate Alexandrium pacificum (유독 와편모조류 Alexandrium pacificum의 생장과 마비성 패독 생산에 미치는 수온과 염분의 영향)

  • Li, PeiJin;Oh, Seok Jin;Kim, Seok-Yun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.866-873
    • /
    • 2022
  • Growth rate and production of the paralytic shellfish poisoning toxin (PST) of a toxic dinoflagellate Alexandrium pacificum (LIMS-PS-2611) isolated from the southern sea of Korea, were examined under various temperatures and salinity conditions. The maximum growth rate (0.28 day-1) was observed under 25℃ and 30 psu. Optimal growth (≥ 70% of maximum growth rate) was obtained between 20~25℃ and 25~35 psu. Among the PSTs of A. pacificum, the principal toxins were C1+2 and GTX5 in N-sulfocarbamoyl toxin group, and minor components were characterized as neoSTXs in the carbamate toxin group. Maximum toxin content was observed under 20℃ and 30 psu, and the toxin content increased with the increase of salinity. Low toxin contents were measured under the temperature and salinity conditions of the maximum growth rate. Therefore, the PSP of bivalve, which occurs at a temperature range of 20-25℃ in June, might have been derived from A. pacificum.

Study on the Flow Characteristics around a Barge in Still Water (정수중 부선 주위의 유동 특성에 관한 연구)

  • Lee, Sang-Min;Jeong, Uh-Cheul;Kim, Hyun-Soo
    • Journal of Navigation and Port Research
    • /
    • v.34 no.6
    • /
    • pp.417-422
    • /
    • 2010
  • In this study, the resistance performances of barge are analyzed by model tests and computation using CFD to investigate the flow characteristics around a barge in still water. The model tests are carried out in infinite depth in Inha Technical College Circulation Tank to observe the resistance and the numerical simulations based on VOF(Volume of Fluid) method are performed to analyze the flow around the barge. We have selected two barge models to investigate the flow characteristics according to the different type of barges. The experiments are carried out with the models from 5kts to 10kts(designed speed 7kts) considering the effect of adverse and favorable current. The numerical simulations are performed to analyze the flow and resistance characteristics of barge in the full loaded condition with the target speed and compared with the experimental data to confirm the reliability of the numerical method. The result was that the difference of resistance with 25% occurred at low speed and EHP increased rapidly from 7kts.

Spatio-temporal Evaluation of Air Temperature-Water Quality Elasticity in Tributary Streams According To Climate Change (기후변화에 따른 지류 하천의 시공간적 기온-수질 탄성도 영향 평가)

  • Park, Jaebeom;Kal, Byungseok;Kim, Seongmin
    • Journal of Wetlands Research
    • /
    • v.23 no.4
    • /
    • pp.296-306
    • /
    • 2021
  • Elasticity is a statistical technique that interprets the changing pattern of another variable according to a change in one variable as a quantitative numerical value and provides more information than correlation analysis and is widely used in climate change research. In this study the elasticity was calculated and sensitivity analysis was performed using air temperature and water quality data of the major tributaries of the Nakdong River. In addition the confidence interval for the elasticity was calculated using the T-Test and the validity of the elasticity was examined. The strength of elasticity shows high strength in the order of summer>fall>spring>winter and the direction shows regional characteristics with both negative and positive elasticity. After performing hierarchical cluster analysis on monthly observation data they were classified into 5 clusters and the characteristics of each cluster were visually analyzed using a parallel coordinate graph. The direction and intensity of the air temperature elasticity show regional characteristics due to the relatively high population density and complex influencing factors such as sewage treatment plants, small-scale livestock houses and agricultural activities. In the case of TP it shows great regional variability according to the circulation of nutrients in the ecosystem caused by algae growth and death according to temperature changes. Since the air temperature elasticity of the major tributaries of the Nakdong River is over weak and is valid at the significance level of 5%, it was analyzed that there is a change in water quality according to the air temperature change.

A Study on Water Quality Modeling for Autochthonous BOD Effect in Namgang Dam Downstream (자생 BOD 영향에 따른 남강댐 하류부 수질모델링 연구)

  • Hwang, Soo Deok;Lee, Sung Jun;Kim, Young Do;Kwon, Jae Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.4
    • /
    • pp.413-424
    • /
    • 2013
  • The TMDL, the watershed-oriented water quality management policy, was introduced to inhibit the total amount of pollutant loading generation, and to develop the region environmentally friendly. However, despite the implementation of TMDL, the water quality of Nam river downstream has worsened continuously since 2005. Diverse pollution sources such as cities and industrial zone are scattered around the Nam river. Eutrophication are caused due to deterioration of water quality by low velocity. BOD concentrations in the eutrophic waters affected by the incoming BOD and the autochthonous BOD by the production of phytoplankton. In this study, the quantitative relation of incoming BOD and autochthonous BOD was analyzed for water quality management. The influence of autochthonous BOD was analyzed using QUALKO2 and QUAL2E. Considering the effects of Chl.a, BOD concentration from QUALKO2 model simulations is higher than BOD concentration from QUAL2E model. The results of QUALKO2 showed higher correlation with the measured data. Autochthonous BOD needs to be managed to solve the water pollution problem of Nam river downstream, which is looking for ways to reduce Chl.a by using the increase of the dam outflow and the improvement of the water quality from WWTP.

Evaluation of Removal Efficiency of Pollutants in Constructed Wetlands for Controlling Nonpoint Sources in the Daechung Reservoir Watershed (대청호 유역 비점오염원 제어를 위한 생태습지의 오염물질 제거효율 평가)

  • Pyeol-Nim Park;Young-Cheol Cho
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.2
    • /
    • pp.127-139
    • /
    • 2023
  • Daechung Reservoir has been suffering from severe cyanobacterial blooming periodically due to the water pollutants from the watershed, especially nutrients from nonpoint sources. As a countermeasure, an artificial wetland was constructed to mitigate the pollutant load from the watershed by utilizing the vegetation. We investigated the water quality of the influent and outflow of the wetland during years 2014~2020 to evaluate the performance of pollutant removal through the wetland. Major pollutants (e.g. BOD, COD, SS, T-N, and T-P) were largely reduced during the retention in the wetland while nutrients removal was more efficient than that of organic matters. Pollutant removal efficiency for different inflow concentrations was also investigated to estimate the wetland's capability as a way of managing nonpoint sources. The efficiency of water treatment was significantly higher when inflow concentrations were above 75th percentile for all pollutant, implying the wetland can be applied to the pre-treatment of high pollution load including initial rainfall runoff. Furthermore, the yearly variation of removal efficiency for seven years was analyzed to better understand long-term trends in water treatment of the wetland. The annual treatment efficiency of T-P was very high in the early stages of vegetation growth with high concentration of inflow water. However, it was confirmed that the concentration of inflow water decreased, vegetation stabilized, and the treatment efficiency gradually decreased as the soil was saturated. The findings of the study suggest that artificial wetlands can be an effective method for controlling harmful algal blooms by alleviating pollutant load from the tributaries of Daechung Reservoir.