• Title/Summary/Keyword: 조강콘크리트

Search Result 102, Processing Time 0.025 seconds

Effect of the Various Admixtures to Improvement of Concrete Using Over-added Blast Furnace Slag at Early Age (고로슬래그 미분말을 다량 사용한 콘크리트의 초기품질 향상에 미치는 각종 혼합재료의 영향)

  • Lee, Ju-Sun;Pei, Chang-Chun;Ryu, Gum-Sung;Koh, Kyung-Taek;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.733-736
    • /
    • 2008
  • This study, with the purpose for early quality improvement of concrete which used large quantity of fly ash, changed various admixture material type and reviewed the basic characteristics. First off, the flow overall was highest when polycarb onic Acid high early strength AE water reducing agent was displaced, while air amount satisfied target level only in the case of plain, and setting time was shown best by getting 30 more minutes than plain and about 3 more hours than conventional when KOH is displaced. Compressive strength was shown best at age 1 day and 3 days when KOH was displaced, and at age 28 days when fine particle cement was displaced. By and large, this study concludes that concrete quality improvement admixture material that used large amount of fly ash showed worse effects than plain, therefore it is determined that there need be more study for development of concrete early quality improvement admixture material that used large amount of fly ash.

  • PDF

Improvement of the Quality on High Volume Fly-Ash Concrete Corresponding to the Addition of Various Admixtures (각종 혼합재료의 첨가에 따른 플라이애쉬 다량 사용 콘크리트의 초기품질 향상)

  • Lee, Ju-Sun;Pei, Chang-Chun;Ryu, Gum-Sung;Koh, Kyung-Taek;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.737-740
    • /
    • 2008
  • This study, with the purpose for early quality improvement of concrete which used large quantity of fly ash, changed various admixture material type and reviewed the basic characteristics. First off, the flow overall was highest when polycarb onic Acid high early strength AE water reducing agent was displaced, while air amount satisfied target level only in the case of plain, and setting time was shown best by getting 30 more minutes than plain and about 3 more hours than conventional when KOH is displaced. Compressive strength was shown best at age 1 day and 3 days when KOH was displaced, and at age 28 days when fine particle cement was displaced. By and large, this study concludes that concrete quality improvement admixture material that used large amount of fly ash showed worse effects than plain, therefore it is determined that there need be more study for development of concrete early quality improvement admixture material that used large amount of fly ash.

  • PDF

Estimation of Air Void System and Permeability of Latex-Modified Concretes by Image Analysis Method (화상분석법을 이용한 라텍스개질 콘크리트의 공극 구조와 투수성의 상관성 분석)

  • Jeong Won-Kyong;Yun Kyong-Ku;Hong Seung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.695-702
    • /
    • 2005
  • It is known that latex-modified concretes were increased their durability and permeability by added latex. The purpose of this study was to analysis the air void systems in latex-modified concretes using a reasonable and objective image analysis method with main experimental variables such as water-cement ratios, latex contents(0%, 15%) and cement types(ordinary portland cement, high-early strength cement and very-early strength cement). The results are analyzed spacing factor, air volume after hardened, air distribution and structure. Also, air void systems and permeability of latex-modified concretes were compared with correlation. The results are as follows; The same w/c ratio LMC showed better air entraining effect than OPC with AE water reducer. The VES-LMC showed that the number of entrained air below $100{\mu}m$ increased more than four times. In the HES-LMC, micro entraining air having range from 50 to $500{\mu}m$ increased above 7 times without antifoamer. Though spacing factor was measured low, latex-modified concretes were showed that permeability was good. It is considered that air void system does not have an effect on the property of latex-modified concretes but latex film is more influenced in the their durability.

A Study on the Properties of Early Strength with the Replacement Ratio of Early Strength Type Binder Using Industrial By-product (산업부산물을 활용한 조강형 결합재의 치환율에 따른 조기강도 특성에 관한 연구)

  • Jun, Woo-Chul;Kwon, Hae-Won;Seo, Hwi Wan;Lee, Jae-Sam
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.254-255
    • /
    • 2014
  • This study is a part of development to improve early-age compressive strength of concrete by using industrial by-products. It tried to investigate the characteristics of early-age compressive strength according to curing temperature and industrial by-product replacement ratio 10, 20, and 30 %. As a result, regardless of industrial by-product replacement ratio and age, early-age compressive strength of concrete was found to be high compared to Plain using 100 % cement.

  • PDF

Investigation for Utilization of Separator Bag Filter Cement (세퍼레이터 백필터 집진 미립자시멘트 (SBFC : Separator Bag Filter Cement)의 활용성 검토)

  • Kim, Kyoung-Min;Park, Sang-Joon;Yoo, Jea-Kang;Lee, Eui-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.78-83
    • /
    • 2010
  • This paper presents the feasibility of incorporating ultrafine particles collected in the separator bag filter (separator bag filter cement, SBFC) during the cement manufacturing process as an substitution material for cement. SBFC does not require additional processes needed in the existing processes to manufacture high early strength cement such as modifying mineral components and adjusting the firing temperature. Moreover, it can also solve the issue of efficiency decrease resulted from the increase of the grinding time applied in the existing process of manufacturing microcement. Therefore, this research has examined the characteristics of SBFC and fresh properties and mechanical properties after making paste and mortar using SBFC in order to use SBFC as a material to gain early strength of concrete. For results, analyzing the chemical composition and physical properties of SBFC, its blaine value was $6,953cm^3/g$, about double than that of OPC, but its chemical composition showed no significant difference. According to the result of the paste and mortar examination, the paste and mortar mixed with SBFC showed a lower flowability, earlier setting time, and higher compressive strength than that with OPC. The result of microstructure analysis of paste, the paste mixed with SBFC indicated about 9% lower internal porosity at an early age than that of OPC. The compressive strength and flexural strength of mortar were higher in the order of SBFC ratio of 100, 50 and 0% SBFC.

  • PDF

Effects of Cement Fineness Modulus (CFM) on the Fundamental Properties of Concrete (시멘트 입도계수(CFM)가 콘크리트의 기초적 특성에 미치는 영향)

  • Noh, Sang-Kyun;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.284-290
    • /
    • 2012
  • Cement Fineness Modulus (CFM) is a method of expressing the distribution of particle sizes of cement in numeric form. If CFM is controlled through crush process of cement without modifying the chemical components or mineral composition of cement, it is judged to be able to produce a cement satisfying various requirements because it is estimated to enable various approaches to cement such as high early strength, moderate heat, low heat cement and so on. Therefore, in this study, as basic research for manufacturing special cement utilizing the controls of CFM, the intention was to review the impacts of CFM on the fundamental properties of concrete. To summarize the result, as mixture characteristics of fresh concrete, ratio of small aggregate and unit quantity were gradually increased, securing greater fluidity, with an increase in CFM, while the amount of AE and SP were reduced gradually. In addition, setting time was delayed as CFM increased. Furthermore, compression strength was relatively high during initial aging as CFM became smaller, but as time passed, compression strength became smaller, and it showed the same level of strength as aging time passed about three years.

An Evaluation Technique of Surface Roughness of Corroded Reinforcing Bar-in-Coils (코일철근의 표면 거칠기 물리량 평가 기술)

  • Roh, Young-Sook;Cho, Kang Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6551-6557
    • /
    • 2015
  • This paper discusses the surface roughness of corroded reinforcement rebar-in-coil focusing on the quantitative measurement technique using 3D scanner. Reinforcement rebar-in-coil was stacked in site for 0 day, 3 days, 7 days, 14 days and 21 days. And rebar-in-coil was corroded 0.04%, 0.3367%, 0.6157%, 0.7898%, and 1.1965% respectively. Using 3-dimensional scanner, each surface profile of reinforcement rebar-in-coil was established, and surface roughness was measured. Through the tests and analyses of corroded rebar-in-coil, the increase of fractal dimension for each rebar-in-coil was measured as 0.0216, 0.0235, 0.028, 0.0319, and 0.0455 for different stacked periods. Therefore, surface assessment technique using fractal dimension showed similar results with the actual corrosion rate.

The Influence of Specimen Volume on the Adiabatic Temperature Rise of Concrete (콘크리트 단열온도 상승량에 미치는 시험체 용적의 영향)

  • Bae, Jun-Young;Cho, Sung-Hyun;Shin, Kyung-Joon;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.659-666
    • /
    • 2012
  • To secure the thermal crack resistance of mass concrete, researches and the field applications of low heat portland cement (LPC), ternary blended cement (TBC) which is produced by blending ordinary portland cement with blast furnace slag and fly ash, and early strength low heat blended cement (EBC) increased in recent years. Although the model for adiabatic temperature rise is necessary for estimating the risk of thermal cracking of concrete structures, sufficient data have not been accumulated for these mixtures. In addition, the differences in adiabatic test results have been reported for the volume of test specimens. Therefore, the present study evaluated the characteristics of adiabatic temperature rise based on the type of binder and the volume of the adiabatic test specimen. Test results indicated that the maximum temperature rise ($Q_{\infty}$) and the reaction factor (r) of TBC were the lowest. Test results also showed that $Q_{\infty}$ and r changed with respect to the volume of test specimen. $Q_{\infty}$ and r obtained from 6l equipment were lower than those of 50l equipment. Therefore, corrections with respect to this phenomenon was confirmed and the corrections factors are presented.

A Study on Durability of Concrete According to Mix Condition by Marine Environment Exposure Experiment (해양환경폭로실험을 통한 배합조건별 콘크리트의 내구성에 관한 연구)

  • Jo, Young-Jin;Choi, Byung-Wook;Choi, Jae-Seok;Jung, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4542-4551
    • /
    • 2013
  • Recently, much attention has focused on the study of eco-friendly concrete using recycled by-products for protecting marine ecosystem and durability of concrete exposed to marine condition. This study evaluated the durabilities of 4 different type of concrete mixtures(Control, Marine, Porous, New slag) with the seawater resistance by marine environment exposure experiment and freeze-thaw resistance, resistance to chloride ion penetration considering severe deterioration environment. In this study, we conducted seawater resistance using compressive strength according to the age(7/28/56 days) of specimen and curing conditions(standard(fresh water), tidal, immersion, artificial seawater). The results show that compressive strength of concrete exposed to marine environment exposure condition was lower than those of the standard curing condition. Also, compressive strength of New slag using eco-friendly materials for protecting marine ecosystem was lower than those of other concretes, there is need to improve the performance of New slag. The results for freeze-thaw resistance showed that all mixtures have excellent, but the Porous and New slag were lower than others. Also, the more improved resistance to chloride ion penetration than those of the Marine was measured in the New slag regardless of curing condition.

A Study on the Mechanical Properties of Carbon Fiber Reinforced Cement Composite Impregnated in Polymer (폴리머 함침 탄소섬유보강 시멘트 복합체의 역학적 특성에 관한 연구)

  • ;;Lee, Burtrand. I.
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.107-118
    • /
    • 1992
  • In order to examine the mechanical properties of carbon fiber reinforced cement composites with silica powder PAN - based carbon fiber and Pitch- based carbon fiber, and polymer impregnators experimental studies on CFRC impregnated in polymer were carried out. The effects of types, length, and content~i of carbon fibers and matrices of fresh and hardened CFRC impregnated in polymer were examined. The test results show that compressive, tensile, and flexural strength of CFRC impregnated in polymer were much more iriCreased than those of air cured and autodaved CFIIC CFRC impregnated in polymer was also considerably effective in improving toughness, freeze thaw resistance, loss of shrinkage, and creep resist ance, compared with air cured and autoclaved CFRC.