• Title/Summary/Keyword: 제주 연안해역

Search Result 194, Processing Time 0.023 seconds

On the Variations of Monthly Mean Sea Levels along the Coast of Korea (한국연안의 월평균해면의 변화에 대하여)

  • Sok-UYi
    • 한국해양학회지
    • /
    • v.2 no.1_2
    • /
    • pp.24-33
    • /
    • 1967
  • The variations of monthly mean sea levels along the coast of Korea anre studied graphic and harmonic methods with the data from 9 tides stations and compared with the variations of atmospheric pressure and the changes in density of sea water measured near some of the stations. The monthly mean sea level generally rises in Summer to Autumn, and falls in Winter to Spring and its range is from 20 cm to 50 cm. The variation of monthly mean sea level is of annual type, having one maximum and one minimum. The semi-range of annual components is 10.5 cm at Pusan and increases to the north in the west coast, to 20.8 cm at Inchon. It's phase is, on the whole, similar for the entire coast with about 210 (middle of August), except at Inchon, 200 . The variation of monthly mean sea level is mainly isostatic, or caused by those of sea water density and atmospheric pressure. Especially, the steric effect is predominant on the south- east coast around Pusan. However, in shallow long bays and estuaries on the west coast, the river runoff effect as well as local wind effect is also considerable. Magnitudes of annual variations at each stations are not constant, but widely variable from year to year. On the east and south coast, especially at Ulneungdo and Pusan the variations are large, which seem to be connected with the shifting of main current axes or current patterns in the offing.

  • PDF

Monitoring of Macroalgal Flora and Community Structure in the Subtidal Zone around Jeju Coasts and Gapado Island, Korea (2013-2015) (한국 제주 연안 및 가파도 해역의 조하대 해조상 및 군집구조 모니터링 (2013-2015))

  • Kim, Bo Yeon;Ko, Jun-Cheol;Choi, Han Gil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.3
    • /
    • pp.262-277
    • /
    • 2018
  • We seasonally examined marine macroalgal community structures and ocean environmental characteristics in subtidal zones at five sites on and around Jeju Island, Korea, from February 2013 to November 2015. A total of 186 macroalgal species were identified, including 18 green, 33 brown, and 135 red algae. During the study period, the number of species was highest at Gapado Island (125 species) followed by Bukchon (123 species), Sagye (122 species), Sinheung (122 species) and Sinchang (97 species). Ecklonia cava, Peyssonnelia caulifera, Synarthrophyton chejuense, Corallina aberrans and Corallina crassisima occurred at all study sites and in all seasons. The average annual biomass of seaweed was $1,125.10g\;wet\;wt./m^2$ and ranged from $899.77g/m^2$ at Sinheung to $1,452.00g/m^2$ at Gapado. A brown alga E. cava was the most dominant species, accounting for 49.84% ($560.78g/m^2$) of the total seaweed biomass. Subdominant species were C. aberrans and C. crassissima, comprising 6.83% ($76.79g/m^2$) and 5.98% ($67.28g/m^2$) of total biomass, respectively. Cluster analysis revealed three distinct groups: the Sagye/Sinheung group (group A), the Bukchon/Sinchang group (group B), and the Gapado group (group C), indicating significantdifferences in macroalgal communities between sites.

Distribution of Indicator Bacteria in Seawater off the Coast of Jeju Island (제주도 연안 해역의 오염지표세균의 분포)

  • Roh, Heyong Jin;Lim, Yun-Jin;Kim, Ahran;Kim, Nam Eun;Kim, Youngjae;Park, Noh Back;Hwang, Jee-Youn;Kwon, Mun-Gyeong;Kim, Do-Hyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.4
    • /
    • pp.450-455
    • /
    • 2018
  • We examined correlations of the density of fish farms with the distributions of indicator bacteria (Escherichia coli, fecal streptococci) and a bacterial fish pathogen (Streptococcus parauberis) off the coastline of Jeju Island. Seawater samples were collected at four coastal sites on the Island [Aewol (control), Gujwa, Pyoseon and Daejeong] in June, August and October 2016. The indicator bacteria were generally more frequently isolated from samples taken in August when water temperatures and human activities on nearby beaches were highest. Although fish farms were least common at Daejeong, the numbers of isolated fecal indicator bacteria were highest in the seawater and effluent water collected from this site. Hence, fish farms were not likely major contributors of indicator bacteria at Daejeong. We found discrepancies between the isolated bacterial counts and the predicted bacterial copy numbers deduced from our qPCR results, indicating that this pathogen may exist in a viable but non-culturable (VBNC) state in seawater. Thus, livestock wastewater and chemical fertilizer loading off Jeju Island may negatively impact seawater quality more than the effluent released from fish farms does.

Distribution of ichthyoplankton in the West coastal waters of Korea (서해연안 해역에 분포하는 부유성 난 및 자치어의 분포특성)

  • YOUN, Byoung-Il;LEE, Seung-Jong;SOHN, Myoung-Ho;HAN, Song-hun;LEE, Hyung-been;KIM, Maeng-jin;HAN, Kyung-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.3
    • /
    • pp.243-251
    • /
    • 2019
  • The ichthyoplanktons were sampled by Bongo net to study the distribution of the eggs and larvae in the West coastal waters of Korea during the study period (February, May, August and October of 2017). Collected fish eggs were divided into Engraulis japonicus and unidentified species. The most dominant species, Engraulis japonicus accounted for 79.52% of the total fish egg, which was followed by unidentified species (20.48%). The total of 36 taxa in fish larvae were identified based on morphological and molecular characteristics. Fish larvae were dominant by Gobiidae species. 48.30% of the total catch in abundance, which was followed by Engraulis japonicus (31.86%). These two taxa composed 80.16% of the total collected fish larvae. The seasonal diversity index of species from the collected fish larvae in the West coastal waters in 2017 was 0.625-1.883 and the evenness index was 0.380-0.865. In addition, dominance index was 0.618-0.920 and richness was 0.573-3.189.

New Finding on Range Expansion and Geographic Variation of Eumicrotremus jindoensis(Cyclopteridae) Collected from Boryeong in the Western Coast of Korea (한국 서해 보령에서 채집된 긴꼬리엄지도치(Eumicrotremus jindoensis)의 지역 확장 및 지리적 변이에 관한 새로운 발견)

  • Song, Young Sun;Kim, Maeng Jin;Kim, Jin-Koo
    • Korean Journal of Ichthyology
    • /
    • v.33 no.3
    • /
    • pp.184-190
    • /
    • 2021
  • Since the original description of new species, Eumicrotremus jindoensis, we confirmed the first occurrence of E. jindoensis based on a single specimen (22.3 mm SL) caught by inshore stow net at the coastal waters of Boryeong of Korea. However, our specimen slightly differed from type specimens in having more vertebrae (26 vs. 21~24), longer snout (17.4% vs. 8.1~9.1%), longer preanus length (67.5% vs. 58.0~58.3%) and shorter second dorsal fin base (15.3% vs. 20.2~20.8%). Comparing with mtDNA COI and Cytb sequences, we could not find any differences in mtDNA Cytb sequences between our specimen and type specimens, which suggest that those morphological differences may belong to local variation by habitat and environmental condition between off Jindo Island and off Boryeong in Korea. Eumicrotremus uenoi is known from the southern sea of Korea narrowly (Busan, Tongyeong, and Jeju Island), the other congeneric species (E. asperrimus, E. pacificus, and E. taranetzi) from only the eastern sea of Korea, but E. jindoensis from the central coast to southern coast of western Korea.

Distribution of Microorganisms and Physico-Chemical Characteristics in the Chagwi-Do Coastal Waters, Jeju Island (제주 차귀도 연안해역 미생물 분포 및 이화학적 특성)

  • Moon Young-Gun;Kim Man-Chul;Lee Joon-Baek;Song Choon-Bok;Yeo In-Kyu;Kim Jong-Man;Park Guen-Tae;Son Hong-Joo;Choi Woo-Bong;Heo Moon-Soo
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.271-278
    • /
    • 2006
  • To investigate the variations of physico-chemical factors and microbial population, in ten stations at water region of coastal area of Chagwi-Do, Nutritive salts, water temperature, transparency, suspended solid, salinity, COD, DO, pH, heterotrophic bacteria, coliform group and Vibrio spp. were analysed three times in September, November in 2004 and February in 2005. Heterotrophic bacteria in surface water was $3.5X10^1{\sim}1.16X10^3cfu/ml,\;1.0X10^2{\sim}5.2X10^1cfu/ml\;2.0X10^1{\sim}7.6X10^1cfu/ml$ and bottom water counted $7.0X10^2{\sim}1.0X10^3cfu/ml,\;1.4X10^1{\sim}2.5X10^2cfu/ml\;2.0X10^2{\sim}4.2X10^1cfu/ml$ in September, November in 2004 and February in 2005, respectively. The cell number of total coliform bacteria in the surface water amounted to $0{\sim}4.3X10^2cfu/ml,\;0{\sim}6.0X10^1cfu/ml,\;0{\sim}1.0X10^1cfu/ml$ and bottom water amounted $0{\sim}2.2X10^2cfu/ml,\;0{\sim}5.4X0^2cfu/ml,\;0{\sim}2.0X10^1cfu/ml$ in September, November in 2004 and February in 2005, respectively. As for Vibrio spp., the cell number in the surface water was $1.0X10^1{\sim}2.5X10^2cfu/ml,\;1.0X10^1{\sim}2.0X10^1cfu/ml,\;0cfu/ml$ and bottom water counted $1.0X10^1{\sim}5.2X10^2cfu/ml,\;0cfu/ml,\;2.0X10^1cfu/ml$ in September, November in 2004 and February in 2005, respectively.

Hydroacoustic survey on distribution and density of fisheries resources in the Marado coastal area of Jeju, Korea (제주도 마라도 연안해역의 어업생물자원에 대한 분포밀도의 음향학적 조사)

  • SEO, Young-Il;OH, Taeg-Yun;CHA, Hyung-Kee;LEE, Kyounghoon;YOON, Eun-A;HWANG, Bo-Kyu;LEE, Yoo-Won;KIM, Byung-Yeob
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.3
    • /
    • pp.209-219
    • /
    • 2016
  • The survey was conducted to investigate biomass and distribution of fisheries resources using a quantitative echo sounder and a fixed gillnet around Marado coast of Jeju to obtain the scientific basic data for dispute resolution with a large purse seine fishery and coastal fishing and policy establishment of reasonable fisheries resources. Hydroacoustic surveys were conducted six times (November 28~29, 2015 (night), February 23~24, 2016 (night) and March 3~4, 2016 (night/day), March 30~31, 2016 (night/day)) using a quantitative echo sounder. The pelagic fish densities were relatively higher around Marado in November 2015, February 2016 and March 3~4, 2016. However, demersal fish densities were relatively higher in Jeju coastal waters on March 30~31, 2016. Catch data using fixed gill net were used to calculate biomass. Based on the hydroacoustic data, fish length-weight function and target strength information of dominant fish, the biomass of fishes were estimated as follow: 5.64 ton CV = 70.2% at night on November 28-29 2015, 7.14 ton CV = 35.8% of pelagic fish and 530.77 ton CV = 34.6% of demersal fishes at night on February 23-24 2016, 2.34 ton CV = 56.7% of pelagic fish and 571.93 ton CV = 40.3% of demersal fish at daytime, 1.39 ton CV = 48.4% of pelagic fish and 194.59 ton CV = 54.3% of demersal fish at night on March 3~4 2016, 0.37 ton CV = 72.9% of pelagic fish and 338.79 ton CV = 99.7% of demersal fish at daytime, 0.24 ton CV = 21.3% of pelagic fish and 68.61 ton CV = 53.8% of demersal fish at night on March 30~31 2016.

Characteristics of Storm Surge by Forward Speed of Typhoon in the South Coast of Korea (태풍의 이동속도에 따른 한국 남해안 폭풍해일고의 특성)

  • Park, Young Hyun;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.5
    • /
    • pp.187-194
    • /
    • 2021
  • The damage caused by typhoons is gradually increasing due to the climate change recently. Hence, many studies have been conducted over a long period of time on various factors that determine the characteristics of storm surge, and most of relationships have been discovered. Because storm surge is complexly determined by various factors, it often show different results and draw different conclusions. For this reason, this study was conducted to understand the various characteristics of storm surge caused by changes in the forward speed of typhoons. This study was carried out with a numerical model, and the effect of forward speed could be analyzed by simplifying other factors as much as possible. When forward speed is increased, storm surges caused by typhoons tended to increase gradually. The storm surge showed a wide and gentle increase at a slow speed, but a narrow and steep one at a fast speed. In the case of the same forward speed, it was found that the storm surge was significantly influenced by the water depth of actual sea area. It was confirmed that the change in forward speed after passing Jeju Island did not significant affect on the storm surge in the south coast of Korea.

Monitoring the Coastal Waters of the Yellow Sea Using Ferry Box and SeaWiFS Data (정기여객선 현장관측 시스템과 SeaWiFS 자료를 이용한 서해 연안 해수환경 모니터링)

  • Ryu, Joo-Hyung;Moon, Jeong-Eon;Min, Jee-Eun;Ahn, Yu-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.323-334
    • /
    • 2007
  • We analyzed the ocean environmental data from water sample and automatic measurement instruments with the Incheon-Jeju passenger ship for 18 times during 4 years from 2001 to 2004. The objectives of this study are to monitor the spatial and temporal variations of ocean environmental parameters in coastal waters of the Yellow Sea using water sample analysis, and to compare and analyze the reliability of automatic measurement sensors for chlorophyll and turbidity using in situ measurements. The chlorophyll concentration showed the ranges between 0.1 to $6.0mg/m^3$. High concentrations occurred in the Gyeonggi Bay through all the cruises. The maximum value of chlorophyll concentration was $16.5mg/m^3$ in this area during September 2004. The absorption coefficients of dissolve organic matter at 400 nm showed below $0.5m^{-1}$ except those in August 2001 During 2002-2003, it did not distinctly change the seasonal variations with the ranges 0.1 to $0.4m^{-1}$. In the case of suspended sediment (SS) concentration, most of the area showed below $20g/m^3$ through all seasons except the Gyeonggi Bay and around Mokpo area. In general SS concentration of autumn and winter season was higher than that of summer. The central area of the Yellow Sea appeared to have lower value $10g/m^3$. The YSI fluorometer for chlorophyll concentration had a very low reliability and turbidity sensor had a $R^2$ value of 0.77 through the 4 times measurements comparing with water sampling method. For the automatic measurement using instruments for chlorphlyll and suspended sediment concentration, McVan and Choses sensor was greater than YSI multisensor. The SeaWiFS SS distribution map was well spatially matched with in situ measurement, however, there was a little difference in quantitative concentration.

Non-astronomical Tides and Monthly Mean Sea Level Variations due to Differing Hydrographic Conditions and Atmospheric Pressure along the Korean Coast from 1999 to 2017 (한국 연안에서 1999년부터 2017년까지 해수물성과 대기압 변화에 따른 계절 비천문조와 월평균 해수면 변화)

  • BYUN, DO-SEONG;CHOI, BYOUNG-JU;KIM, HYOWON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.1
    • /
    • pp.11-36
    • /
    • 2021
  • The solar annual (Sa) and semiannual (Ssa) tides account for much of the non-uniform annual and seasonal variability observed in sea levels. These non-equilibrium tides depend on atmospheric variations, forced by changes in the Sun's distance and declination, as well as on hydrographic conditions. Here we employ tidal harmonic analyses to calculate Sa and Ssa harmonic constants for 21 Korean coastal tidal stations (TS), operated by the Korea Hydrographic and Oceanographic Agency. We used 19 year-long (1999 to 2017) 1 hr-interval sea level records from each site, and used two conventional harmonic analysis (HA) programs (Task2K and UTide). The stability of Sa harmonic constants was estimated with respect to starting date and record length of the data, and we examined the spatial distribution of the calculated Sa and Ssa harmonic constants. HA was performed on Incheon TS (ITS) records using 369-day subsets; the first start date was January 1, 1999, the subsequent data subset starting 24 hours later, and so on up until the final start date was December 27, 2017. Variations in the Sa constants produced by the two HA packages had similar magnitudes and start date sensitivity. Results from the two HA packages had a large difference in phase lag (about 78°) but relatively small amplitude (<1 cm) difference. The phase lag difference occurred in large part since Task2K excludes the perihelion astronomical variable. Sensitivity of the ITS Sa constants to data record length (i.e., 1, 2, 3, 5, 9, and 19 years) was also tested to determine the data length needed to yield stable Sa results. HA results revealed that 5 to 9 year sea level records could estimate Sa harmonic constants with relatively small error, while the best results are produced using 19 year-long records. As noted earlier, Sa amplitudes vary with regional hydrographic and atmospheric conditions. Sa amplitudes at the twenty one TS ranged from 15.0 to 18.6 cm, 10.7 to 17.5 cm, and 10.5 to 13.0 cm, along the west coast, south coast including Jejudo, and east coast including Ulleungdo, respectively. Except at Ulleungdo, it was found that the Ssa constituent contributes to produce asymmetric seasonal sea level variation and it delays (hastens) the highest (lowest) sea levels. Comparisons between monthly mean, air-pressure adjusted, and steric sea level variations revealed that year-to-year and asymmetric seasonal variations in sea levels were largely produced by steric sea level variation and inverted barometer effect.