Browse > Article
http://dx.doi.org/10.35399/ISK.33.3.4

New Finding on Range Expansion and Geographic Variation of Eumicrotremus jindoensis(Cyclopteridae) Collected from Boryeong in the Western Coast of Korea  

Song, Young Sun (Dokdo Fisheries Research Center, East Sea Fisheries Research Institute, National Institute of Fisheries Science)
Kim, Maeng Jin (West Fisheries Research Institute, National Institute of Fisheries Science)
Kim, Jin-Koo (Department of Marine Biology, Pukyong National University)
Publication Information
Korean Journal of Ichthyology / v.33, no.3, 2021 , pp. 184-190 More about this Journal
Abstract
Since the original description of new species, Eumicrotremus jindoensis, we confirmed the first occurrence of E. jindoensis based on a single specimen (22.3 mm SL) caught by inshore stow net at the coastal waters of Boryeong of Korea. However, our specimen slightly differed from type specimens in having more vertebrae (26 vs. 21~24), longer snout (17.4% vs. 8.1~9.1%), longer preanus length (67.5% vs. 58.0~58.3%) and shorter second dorsal fin base (15.3% vs. 20.2~20.8%). Comparing with mtDNA COI and Cytb sequences, we could not find any differences in mtDNA Cytb sequences between our specimen and type specimens, which suggest that those morphological differences may belong to local variation by habitat and environmental condition between off Jindo Island and off Boryeong in Korea. Eumicrotremus uenoi is known from the southern sea of Korea narrowly (Busan, Tongyeong, and Jeju Island), the other congeneric species (E. asperrimus, E. pacificus, and E. taranetzi) from only the eastern sea of Korea, but E. jindoensis from the central coast to southern coast of western Korea.
Keywords
Eumicrotremus jindoensis; distribution; morphology; variation; Korea;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Thompson, J.D., D.G. Higgins and T.J. Gibson. 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acid. Res., 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673.   DOI
2 Ward, R.D., T.S. Zemlak, B.H. Innes, P. Last and P.D.N. Hebert. 2005. DNA barcoding Australia's fish species. Philo. Trans. Roy. Soc. B., 360: 1847-1857. https://doi.org/10.1098/rstb.2005.1716.   DOI
3 Chernova, N.V. 2008. Systematics and phylogeny of fish of the genus Liparis (Liparidae, Scorpaeniformes). J. Ichthyol., 48: 831-851. https://doi.org/10.1134/S0032945208100020.   DOI
4 Endo, C. and K. Watanabe. 2020. Morphological variation associated with trophic niche expansion within a lake population of a benthic fish. PLoS ONE, 15: e0232114. https://doi.org/10.1371/journal.pone.0232114.   DOI
5 Green, D.M. and D.L. Barber. 1988. The ventral adhesive disc of the clingfish Gobiesox maeandricus: integumental structure and adhesive mechanisms. Can. J. Zool., 66: 1610-1619. https://doi.org/10.1139/z88-235.   DOI
6 Kai, Y., D.E. Stevenson, Y. Ueda, T. Hamatsu and T. Nakabo. 2014. Molecular insights into geographic and morphological variation within the Eumicrotremus asperrimus species complex (Cottoidei: Cyclopteridae). Ichthyol. Res., 62: 396-408.   DOI
7 Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol., 16: 111-120. https://doi.org/10.1007/BF01731581.   DOI
8 MABIK (Marine Biodiversity Institute of Korea). 2019. National List of Marine Species. Namu Press, Seocheon, Korea, 138pp.
9 Nachtigall, W. 1974. Biological mechanism of attachment. The comparative morphology and bioengineering of organs for linkage, suction, adhesion. Springer-Verlag, Berlin, N.Y., U.S.A., 194pp.
10 Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol., 30: 2725-2729. https://doi.org/10.1093/molbev/mst197.   DOI
11 Ueno, T. 1970. Fauna Japonica, Cyclopteridae (Pisces). Acad. Press Japan, Tokyo, Japan, 233pp.
12 Voskoboinikova, O.S. and A.A. Balanov. 2019. Morphological variability of the spotted lumpsucker Eumicrotremus pacificus (Cottoidei, Cyclopteridae). J. Ichthyol., 59: 656-663. https://doi.org/10.1134/S0032945219050175.   DOI
13 Song, Y.S., T.W. Ban and J.K. Kim. 2015. Molecular phylogeny and taxonomic review of the family Liparidae (Scorpaenoidei) from Korea. Korean J. Ichthyol., 27: 165-182.
14 Froese, R. and D. Pauly. 2020. FishBase. World Wide Web electronic publication. version (12/2020). Available at: http://www.fishbase.org.
15 Budney, L.A. and B.K. Hall. 2010. Comparative morphology and osteology of pelvic fin-derived midline suckers in lumpfishes, snailfishes and gobies. J. Appl. Ichthyol., 26: 167-175. https://doi.org/10.1111/j.1439-0426.2010.01398.x.   DOI
16 Choo, H.S. and D.S. Kim. 2013. Tide and tidal currents around the archipelago on the Southwestern waters of the South Sea, Korea. J. Korean Soc. Mar. Environ., 19: 582-596. https://doi.org/10.7837/kosomes.2013.19.6.582.   DOI
17 Ding, G.W. 1987. Cottoidei. In: Liu, C.X. and K.J. Qin (eds.), Fauna Liaoningica. Liaoning Science and Technology Press, Shenyang, China, pp. 400-414.
18 Gilbert, C.H. 1896. The ichthyological collections of the steamer Albatross during the years 1890 and 1891. Rep. U.S. Fish. Comm., 19: 393-476, pls. 20-35.
19 Jordan, D.S. and J.O. Snyder. 1902. A review of the discobolous fishes of Japan. Proc. U. S. Natl. Mus., 24: 343-351.   DOI
20 Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acid. Symp. Ser., 41: 95-98.
21 KHOA (Korea Hydrographic and Oceanographic Agency). 2020. Korean real time database for NEAR-GOOS. version (03/2021). Available at: www.khoa.go.kr.
22 Kim, B.J. 2015. New record of a lumpfish, Lethotremus awae (Scorpaeniformes: Cyclopteridae) from Korea as a filling of distributional gap in the Western North Pacific. Korean J. Ichthyol., 27: 153-158.
23 Koh, C.H. and J.S. Khim. 2014. The Korean tidal flat of the Yellow Sea: Physical setting, ecosystem and management. Ocean Coast. Manag., 102: 398-414. https://doi.org/10.1016/j.ocecoaman.2014.07.008.   DOI
24 Lee, S.J., J.K. Kim, Y. Kai, S. Ikeguchi and T. Nakabo. 2017. Taxonomic review of dwarf species of Eumicrotremus(Actinopterygii: Cottoidei: Cyclopteridae) with descriptions of two new species from the western North Pacific. Zootaxa, 4282: 337-349. https://doi.org/10.11646/zootaxa.4282.2.7.   DOI
25 Schoenfuss, H.L. and R.W. Blob. 2003. Kinematics of waterfall climbing in Hawaiian freshwater fishes (Gobiidae): vertical propulsion at the aquatic-terrestrial interface. J. Zool., 261: 191-205.   DOI
26 Manning, C.G., S.J. Foster and A.C.J. Vincent. 2019. A review of the diets and feeding behaviours of a family of biologically diverse marine fishes(Family Syngnathidae). Rev. Fish Biol. Fisheries, 29: 197-221.   DOI
27 Mecklenburg, C.W. and B.A. Sheiko. 2003. Family Cyclopteridae Bonaparte 1831 -lumpsuckers. Calif. Acad. Sci. Ann. Checklists of Fish., 6: 1-17.
28 Palumbi, S.R. 1996. Nucleic Acids II: the polymerase chain reaction. In: Hillis, D., C. Moritz and B. Mable (eds.), Molecular Systematics. Sinauer Ass. Inc., Sunderland, Massachussetts, U.S.A., pp. 205-247.
29 Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454.   DOI