• Title/Summary/Keyword: 제어법칙

Search Result 299, Processing Time 0.029 seconds

A Study on Control Law Augmentation in order to Improve Aircraft Controllability and Stability in High Angle of Attack (고받음각에서 조종성능 및 안정성 증강을 위한 제어법칙에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Lee, Dong-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.60-67
    • /
    • 2005
  • Modern version of supersonic jet fighter aircraft must have guaranteed appropriate controllability and stability in HAoA(high angle of attack). Limit value of aircraft entering into the deep stall in HAoA is related to aircraft configuration design. But, In order to guarantee the aircraft's safety in HAoA, control law for HAoA region implemented in digital Fly-By-Wire flight control system of supersonic jet fighter. The AoA limiter is designed for positive HAoA in longitudinal control law. But, aircraft departure during aggressive negative pitch maneuver such as push over in departure resistance flight test. Therefore negative AoA limiter is needed in longitudinal control law. Result of T-50 flight test show that the AoA is exceed the limit value during aggressive positive pitch maneuver in pull up of power approach mode. In this paper, the AoA limit control law in positive and negative AoA was proposed in order to improve aircraft controllability and stability.

Composite Guidance Law for Impact Angle Control of Passive Homing Missiles (수동 호밍 유도탄의 충돌각 제어를 위한 복합 유도법칙)

  • Park, Bong-Gyun;Kim, Tae-Hun;Tahk, Min-Jea;Kim, Youn-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.20-28
    • /
    • 2014
  • In this paper, based on the characteristics of proportional navigation, a composite guidance law is proposed for impact angle control of passive homing missiles maintaining the lock-on condition of the seeker. The proposed law is composed of two guidance commands: the first command is to keep the look angle constant after converging to the specific look angle of the seeker, and the second is to impact the target with terminal angle constraint and is implemented after satisfying the specific line of sight(LOS) angle. Because the proposed law considers the seeker's filed-of-view(FOV) and acceleration limits simultaneously and requires neither time-to-go estimation nor relative range information, it can be easily applied to passive homing missiles. The performance and characteristics of the proposed law are investigated through nonlinear simulations with various engagement conditions.

Guidance Law of Missiles for Control Impact-Time-and-Angle by Flight Path Angle in Three Dimensional Space (3차원 공간에서의 비행 경로각을 이용한 비행시간 및 충돌각 제어 유도법칙)

  • Jin, Sheng-Hao;Lee, Chun-Gi;Yang, Bin;Hwan, Chung-Won;Park, Seung-Yub
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • This paper on the assumption that the target is stationary and the velocity of missile is fixed value. In three dimensional space. Using flight path angle to simultaneous control impact-time-and-angle base on a homing guidance law. The independent variable in the nonlinear engagement model is the flight path angle of the missile. The propose homing guidance law can see the controllability of impact-time-and-angle. And also can see the processing of the missile arrive at the target. It is applied to several salvo attack scenarios. The performance of the proposed guidance law is verified by simulations.

Control Allocation of Reaction Wheels for Maximum Torque Generation (반작용 휠의 최대 가용 토크 분배법칙)

  • Choi, Yoon-Hyuk;Lee, Hen-Zeh;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.651-657
    • /
    • 2008
  • A new approach for maximizing torque capability of low efficient reaction wheel assembly is addressed in this paper. At first, to find out a solution in constrainted field, weighted pseudo-inverse and momentum minimized allocation are suggested instead of a general control allocation called pseudo-inverse. The second method is a structural manner to enlarge torque capability of specific axis by changing installed skew angle of wheels. Two proposed methods are applied to large angle maneuvers of satellite. Improvement of control performance and feasibility for applying to commercial satellite attitude control are demonstrated by numeric simulations.

Guidance Law to Reach Circular Target Area With Grazing Angle Constraint (지향각 구속조건을 갖는 원형 목표구역 도달 유도 법칙)

  • Jeon, In-Soo;Lee, Jin-Ik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.884-890
    • /
    • 2008
  • A new guidance law to reach circular target area with grazing angle constraint is proposed as one of midcourse guidance laws of unmanned air vehicles. The purpose of the law is to control the grazing angle between the velocity vector of the vehicle and the line of sight to the aiming point, the center of the circular target area, when the vehicle passes any point on the circle. The optimal solution is derived based on the optimal control theory minimizing a range weighted control energy subject to the nonlinear dynamic equations of the vehicle approaching to the circular target area with grazing angle constraint. The major properties including a convergence of the solution are examined and the performance of the law applied to some typical scenarios is shown by the numerical simulation.

Guidance Laws for Aircraft Automatic Landing (항공기 자동착륙 유도 법칙에 관한 연구)

  • Min, Byoung-Mun;No, Tae-Soo;Song, Ki-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.41-47
    • /
    • 2002
  • In this paper, a guidance law applicable to aircraft automatic landing is proposed and its performance is compared with the conventional ILS-type landing approach. The concept of miss distance, which is commonly used in the missile guidance laws, and Lyapunov stability are effectively combined to obtain the landing guidance law. The new landing guidance law is integrated into the existing controller and is applied to the landing approach and flare phases of landing procedure. Numerical simulation results show that the new landing guidance law is a viable alternative to the conventional strategies that directly control the longitudinal deviation or altitude.

Design of Controller for Nonlinear Multivariable System Using Dynamic Neural Unit (동적신경망을 이용한 비선형 다변수 시스템의 제어기 설계)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1178-1183
    • /
    • 2008
  • The variable structure control(VSC) with sliding mode is an important and interesting topic in modern control of nonlinear systems. However, the discontinuous control law in VSC leads to undesirable chattering in practice. As a method solving this problem, in this paper, we propose a scheme of the VSC with neural network sliding surface. A neural network sliding surface with boundary layer is employed to solve discontinuous control law. The proposed controller can eliminate the chattering problem of the conventional VSC. The effectiveness of the proposed control scheme is verified by simulation results.

Posture control for the free flying objects using chained form transformation. (체인드 폼을 이용한 공중부상체의 자세제어.)

  • Nam, Taek-Kun;Lee, Ki-Changi;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2378-2380
    • /
    • 2003
  • 본 연구에서는 각 운동량 보존법칙으로부터 도출되어지는 공중부상체(flying objects)의 제어기법에 대해 논의하고자 한다. 먼저, 공중부상체에 대하여 각 운동량 보존법칙을 적용하여 적분불가능한 구속조건으로부터 비 홀로노믹시스템을 도출하고 상태변환과 입력변환을 행하여 제어가 용이한 체인드 폼(Chained form)을 유도한다. 체인드 폼에 대해서는 백스테핑제어기법을 적용하여 제어기를 설계하고 제어기법의 유용성을 검증하기 위하여 3개의 회전관절로 구성된 공중부상체를 대상으로 하여 초기자세로부터 목적자세까지의 제어를 행하였다.

  • PDF

Pole Placement Method of a Double Poles Using LQ Control and Pole's Moving-Range (LQ 제어와 근의 이동범위를 이용한 중근의 극배치 방법)

  • Park, Minho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.20-27
    • /
    • 2020
  • In general, a nonlinear system is linearized in the form of a multiplication of the 1st and 2nd order system. This paper reports a design method of a weighting matrix and control law of LQ control to move the double poles that have a Jordan block to a pair of complex conjugate poles. This method has the advantages of pole placement and the guarantee of stability, but this method cannot position the poles correctly, and the matrix is chosen using a trial and error method. Therefore, a relation function (𝜌, 𝜃) between the poles and the matrix was derived under the condition that the poles are the roots of the characteristic equation of the Hamiltonian system. In addition, the Pole's Moving-range was obtained under the condition that the state weighting matrix becomes a positive semi-definite matrix. This paper presents examples of how the matrix and control law is calculated.

Composite Guidance Law for Impact Angle Control Against Moving Targets Under Physical Constraints (이동표적 타격을 위하여 물리적 구속조건을 고려한 충돌각 제어 복합 유도법칙)

  • Park, Bong-Gyun;Kim, Tae-Hun;Kim, Youn-Hwan;Kwon, Hyuck-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.497-506
    • /
    • 2015
  • A composite guidance law for impact angle control against nonstationary nonmaneuvering targets is proposed. The proposed law is based on the characteristics of proportional navigation and generates two kinds of guidance commands during the homing phase. The first command is to keep the desired look angle, and the second is to attack the target with impact angle constraint. The switch of guidance phases occurs when the specific light-of-sight(LOS) angle determined from the engagement information is satisfied. The calculation method of the maximum achievable impact angle is also proposed to design easily the desired impact angle within the missile capability. Numerical simulations are performed to investigate the performance and characteristics of the proposed law.