• Title/Summary/Keyword: 제스처 인식

Search Result 329, Processing Time 0.027 seconds

Industrialization of Augmented Reality Contents : Focusing on the 21st Century's Films and Augmented Reality Arts (증강현실 콘텐츠의 산업화 : 21세기 영화와 증강현실 예술을 중심으로)

  • Kim, Hee-Young
    • Cartoon and Animation Studies
    • /
    • s.35
    • /
    • pp.347-374
    • /
    • 2014
  • The aim of this article is to consider the future of industrialization of Augmented Reality contents focusing on cinematic imagination of films that used Augmented Reality techniques and artistic imagination of Augmented Reality Arts in the 21st century. The film showing future technology through cinematic imagination plays an role in the presentation of future vision important. Augmented Reality Arts show the big picture of future arts, future aspect of society, and future culture by using technically possible present technology. I classified the researched films according to Augmented Reality technique. It is expected that Gesture Recognition will develop with transparent display device techniques, Hologram techniques will be changed into individualized communication styles, Biometrics will be able to evolve into multi-Biometrics, and Wearable Computer will develop in the aspect of physical body augmentation and then industrialize. In Augmented Reality Arts, it seems that the various utilization of avatar will be related to Hologram, the utilization of the physiological phenomenon of the human body will be related to Biometrics, the mixture of reality and virtual reality will utilize display devices through Gesture Recognition, and a new experiment of HMD(Head-Mounted Display) will industrialize with the diversification of Wearable Computer. Augmented Reality contents created through the imagination and representation in the films and arts take a role in helping human life, and, at the same time, show the future image industrialized in the way of combination between human and environment without a medium.

Gesture Recognition based on Motion Inertial Sensors for Interactive Game Contents (체험형 게임콘텐츠를 위한 움직임 관성센서 기반의 제스처 인식)

  • Jung, Young-Kee;Cha, Byung-Rae
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.2
    • /
    • pp.262-271
    • /
    • 2009
  • The purpose of this study was to propose the method to recognize gestures based on inertia sensor which recognizes the movements of the user using inertia sensor and lets the user enjoy the game by comparing the recognized movements with the pre-defined movements for the game contents production. Additionally, it was tried to provide users with various data entry methods by letting them wear small controllers using three-axis accelerator sensor. Users can proceed the game by moving according to the action list printed on the screen. They can proceed the experiential games according to the accuracy and timing of their movements. If they use multiple small wireless controllers together wearing them on the major parts of hands and feet and utilize the proposed methods, they will be more interested in the game and be absorbed in it.

  • PDF

Motion-based Controlling 4D Special Effect Devices to Activate Immersive Contents (실감형 콘텐츠 작동을 위한 모션 기반 4D 특수효과 장치 제어)

  • Kim, Kwang Jin;Lee, Chil Woo
    • Smart Media Journal
    • /
    • v.8 no.1
    • /
    • pp.51-58
    • /
    • 2019
  • This paper describes a gesture application to controlling the special effects of physical devices for 4D contents using the PWM (Pulse Width Modulation) method. The user operation recognized by the infrared sensor is interpreted as a command for 3D content control, several of which manipulate the device that generates the special effect to display the physical stimulus to the user. With the content controlled under the NUI (Natural User Interface) technique, the user can be directly put into an immersion experience, which leads to provision of the higher degree of interest and attention. In order to measure the efficiency of the proposed method, we implemented a PWM-based real-time linear control system that manages the parameters of the motion recognition and animation controller using the infrared sensor and transmits the event.

large-scale interactive display system using gesture recognition module (제스처 인식 모듈을 이용한 대규모 멀티 인터랙티브 디스플레이 시스템)

  • Kang, Maeng-Kwan;Kim, Jung-Hoon;Jo, Sung-Hyun;Joo, Woo-Suck;Yoon, Tae-Soo;Lee, Dong-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.803-806
    • /
    • 2010
  • 본 논문에서는 스크린을 터치를 하지 않고 또한 스크린의 영역의 크기에 상관없이 제스처를 이용하여 인터랙션이 가능한 제스쳐 인식 모듈을 이용한 대규모 멀티 인터랙티브 디스플레이 시스템을 제안한다. IR laser를 이용하여 인터랙션 영역을 생성하고 band pass filter를 장착한 적외선 카메라를 이용하여 인터랙션 영역 안의 영상을 획득한다. 획득되어진 영상은 제안하는 영상처리모듈을 이용하여 이진화->블랍-라벨링 과정을 거쳐 잡음을 제거한 후 인터랙션 영역 안에서 이루어지는 인터랙션 좌표를 획득한 후 Packet으로 저장한다. 저장 된 Packet은 네트워크 통신 시스템을 이용하여 Server로 보내어지고 Server에서는 메타포분석모듈을 이용하여 분석하여 결과를 메타포이벤트로 저장한 후 콘텐츠에 보낸다. 콘텐츠에서는 받은 메타포이벤트에 따라서 콘텐츠 결과를 보여 줌으로써 스크린을 터치 하지 않아도 터치 인터랙션이 가능하며 스크린 영역에 제한 없이 많은 사용자가 동시에 사용이 가능한 시스템 사용이 가능하도록 한다. 본 시스템은 향후 보다 다양한 인터랙션과 시스템 크기의 확장으로 보다 많은 사용자가 동시에 사용가능하며 다양한 인터랙션을 사용할 수 있는 인식 디바이스로써 활용이 가능하다.

Design and Evaluation of a Hand-held Device for Recognizing Mid-air Hand Gestures (공중 손동작 인식을 위한 핸드 헬드형 기기의 설계 및 평가)

  • Seo, Kyeongeun;Cho, Hyeonjoong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.2
    • /
    • pp.91-96
    • /
    • 2015
  • We propose AirPincher, a handheld pointing device for recognizing delicate mid-air hand gestures to control a remote display. AirPincher is designed to overcome disadvantages of the two kinds of existing hand gesture-aware techniques such as glove-based and vision-based. The glove-based techniques cause cumbersomeness of wearing gloves every time and the vision-based techniques incur performance dependence on distance between a user and a remote display. AirPincher allows a user to hold the device in one hand and to generate several delicate finger gestures. The gestures are captured by several sensors proximately embedded into AirPincher. These features help AirPincher avoid the aforementioned disadvantages of the existing techniques. We experimentally find an efficient size of the virtual input space and evaluate two types of pointing interfaces with AirPincher for a remote display. Our experiments suggest appropriate configurations to use the proposed device.

Recognition of Natural Hand Gesture by Using HMM (HMM을 이용한 자연스러운 손동작 인식)

  • Kim, A-Ram;Rhee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.639-645
    • /
    • 2012
  • In this paper, we propose a method that gives motion command to a mobile robot to recognize human being's hand gesture. Former way of the robot-controlling system with the movement of hand used several kinds of pre-arranged gesture, therefore the ordering motion was unnatural. Also it forced people to study the pre-arranged gesture, making it more inconvenient. To solve this problem, there are many researches going on trying to figure out another way to make the machine to recognize the movement of the hand. In this paper, we used third-dimensional camera to obtain the color and depth data, which can be used to search the human hand and recognize its movement based on it. We used HMM method to make the proposed system to perceive the movement, then the observed data transfers to the robot making it to move at the direction where we want it to be.

Development of Driver's Emotion and Attention Recognition System using Multi-modal Sensor Fusion Algorithm (다중 센서 융합 알고리즘을 이용한 운전자의 감정 및 주의력 인식 기술 개발)

  • Han, Cheol-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.754-761
    • /
    • 2008
  • As the automobile industry and technologies are developed, driver's tend to more concern about service matters than mechanical matters. For this reason, interests about recognition of human knowledge and emotion to make safe and convenient driving environment for driver are increasing more and more. recognition of human knowledge and emotion are emotion engineering technology which has been studied since the late 1980s to provide people with human-friendly services. Emotion engineering technology analyzes people's emotion through their faces, voices and gestures, so if we use this technology for automobile, we can supply drivels with various kinds of service for each driver's situation and help them drive safely. Furthermore, we can prevent accidents which are caused by careless driving or dozing off while driving by recognizing driver's gestures. the purpose of this paper is to develop a system which can recognize states of driver's emotion and attention for safe driving. First of all, we detect a signals of driver's emotion by using bio-motion signals, sleepiness and attention, and then we build several types of databases. by analyzing this databases, we find some special features about drivers' emotion, sleepiness and attention, and fuse the results through Multi-Modal method so that it is possible to develop the system.

A Study on Hand-signal Recognition System in 3-dimensional Space (3차원 공간상의 수신호 인식 시스템에 대한 연구)

  • 장효영;김대진;김정배;변증남
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.103-114
    • /
    • 2004
  • This paper deals with a system that is capable of recognizing hand-signals in 3-dimensional space. The system uses 2 color cameras as input devices. Vision-based gesture recognition system is known to be user-friendly because of its contact-free characteristic. But as with other applications using a camera as an input device, there are difficulties under complex background and varying illumination. In order to detect hand region robustly from a input image under various conditions without any special gloves or markers, the paper uses previous position information and adaptive hand color model. The paper defines a hand-signal as a combination of two basic elements such as 'hand pose' and 'hand trajectory'. As an extensive classification method for hand pose, the paper proposes 2-stage classification method by using 'small group concept'. Also, the paper suggests a complementary feature selection method from images from two color cameras. We verified our method with a hand-signal application to our driving simulator.

An Experimental Research on the Usability of Indirect Control using Finger Gesture Interaction in Three Dimensional Space (3차원 공간에서 손가락 제스쳐 인터랙션을 이용한 간접제어의 사용성에 관한 실험연구)

  • Ham, Kyung Sun;Lee, Dahye;Hong, Hee Jung;Park, Sungjae;Kim, Jinwoo
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.519-532
    • /
    • 2014
  • The emerging technologies for the natural computer interaction can give manufacturers new opportunities of product innovation. This paper is the study on a method of human communication about a finger gestures interaction. As technological advance has been so rapid over the last few decades, the utilizing products or services will be soon popular. The purpose of this experiment are as follows; What is the usefulness of gesture interaction? What is the cognitive impact on gesture interaction users. The finger gestures interaction consist of poking, picking and grasping. By measuring each usability in 2D and 3D space, this study shows the effect of finger gestures interaction. The 2D and 3D experimental tool is developed by using LeapMotion technology. As a results, the experiments involved 48 subjects shows that there is no difference in usability between the gestures in 2D space but in 3D space, the meaningful difference has been found. In addition, all gestures express good usability in 2D space rather than 3D space. Especially, there are the attractive interest that using uni-finger is better than multi-fingers.

The Design of Efficient User Environment on the FTIR Multi Touch (FTIR 멀티터치 테이블에서 효율적인 사용자 환경 개발)

  • Park, Sang-Bong;Ahn, Jung-Seo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.85-94
    • /
    • 2012
  • In this paper, we develop the new gestures of screen control with fingers on the FTIR multi touch table. It also describes recognition of mobile devices on the table using infrared camera. The FTIR multi touch table was incovenient to the existiog Bluetooth connection, because it is not provided with an HID(Human Input Device) interface. The proposed data transmission method using mobile device is to relieve the inconvenience of the data transfer and proceed more effectively. The new gestures and data transmission method is verified by FTIR multi touch table that is implemented for testing.